DynaGraph: Dynamic Graph Neural Networks at Scale

Mingyu Guan*, Anand Iyer*, Taesoo Kim* *Georgia Institute of Technology * Microsoft Research

GRADES-NDA 2022

Graph Neural Networks (GNNs)

- The recent past has seen an increasing interest in GNNs.
- Node embeddings are generated by combining graph structure and feature information.
- Most GNN models can fit into the Message Passing Paradigm.

Dynamic GNNs

- Most of existing GNN frameworks assume that the input graph is static.
- Real-world graphs are often *dynamic* in nature.
- Representation: a time series of snapshots of the graph.
- Common approach: Combine GNNs and RNNs.
 - GNNs for encoding spatial information (graph structure)
 - RNNs for encoding temporal information

GRU

GRU

Time-independent

GRU

Time-independent

Time-dependent

GraphLSTM

GraphGRU

Time-independent

Time-dependent

Challenge #1: Redundant Neighborhood Aggregation

Challenge #2: Inefficient Distributed Training

- No existing systems for training static GNNs, for example, DGL, support distributed dynamic GNN training in an efficient way.
- Static GNN training:
 - Partitioning both the graph structure and node features across machines.
 - Using data parallelism to train a static GNN.
- Can we partition each snapshot individually?
 - Partitioning and maintaining a large number of snapshots can be **expensive**.
 - The graph structure and the node features in each snapshot may vary.

 m_{x_t}

 W_{ho}

Time-dependent

Typical Message Passing Paradigm of GNN:

$$\begin{split} m_{u \to v}^l &= M^l(h_v^{l-1}, h_u^{l-1}, e_{u \to v}^{l-1}) \\ m_v^l &= \sum_{u \in \mathrm{N}(v)} m_{u \to v}^l \\ h_v^l &= U^l(h_v^{l-1}, m_v^l) \end{split}$$

Typical Message Passing Paradigm of GNN:

$$m_{u \to v}^{l} = M^{l}(h_{v}^{l-1}, h_{u}^{l-1}, e_{u \to v}^{l-1})$$

$$m_{v}^{l} = \sum_{u \in N(v)} m_{u \to v}^{l}$$

$$h_{v}^{l} = U^{l}(h_{v}^{l-1}, m_{v}^{l})$$

The results after the message passing can be reused for all graph convolution in the same category.

• Dynamic graphs are often trained using **sequence-to-sequence** models in a **sliding-window** fashion.

• Dynamic graphs are often trained using **sequence-to-sequence** models in a **sliding-window** fashion.

• Dynamic graphs are often trained using **sequence-to-sequence** models in a **sliding-window** fashion.

Neighborhood aggregation has already been performed in previous sequence(s)!

Distributed DGNN Training

Sliding Window

DynaGraph API

cache() Cache caller function outputs; do nothing if already cached.

msg_pass() Computes intermediate message passing results.

update() Computes output representation from intermediate message passing results.

integrate() Integrates a GNN into a GraphRNN to create a dynamic GNN.

stack_seq_model() Stacks dynamic GNN layers to an encoder-decoder structure.

Implementation & Evaluation

- Implemented on Deep Graph Library (DGL) v0.7
- Evaluated using 8 machines, each with 2 NVIDIA Tesla V100 GPUs
 - **METR-LA**: 207 nodes/snapshots, |F|=2, |S|= 34K
 - **PEMS-BAY**: 325 nodes/snapshots, |F|=2, |S|= 52K
 - METR-LA-Large: 0.4m nodes/snapshots, |F|=128, |S|= 34k
 - PEMS-BAY-Large: 0.7m nodes/snapshots, |F|=128, |S|= 52k
- Several Dynamic GNN architectures
 - GCRN-GRU, GCRN-LSTM [ICONIP '18]
 - DCRNN [ICLR '18]

DynaGraph Single-Machine Performance

DynaGraph Distributed Performance

DynaGraph Scaling

Summary

- Supporting dynamic graphs is increasingly important for enabling many GNN applications.
 - Existing GNN systems mainly focus on static graphs and static GNNs.
 - Dynamic GNN architectures combine GNN techniques and temporal embedding techniques like RNNs.
- DynaGraph enables dynamic GNN training at scale.
 - Several techniques to reuse intermediate results.
 - Efficient distributed training.
 - Outperforms state-of-the-art solutions.

Thank you!

Contact: mingyu.guan@gatech.edu