DynaGraph: Dynamic Graph
Neural Networks at Scale

Mingyu Guan®, Anand lyer*, Taesoo Kim”
"Georgia Institute of Technology *Microsoft Research

GRADES-NDA 2022

Georgia 0soft’
Tech. Mﬁ

Graph Neural Networks (GNNs)

* The recent past has seen an increasing interest in GNNs.

* Node embeddings are generated by combining graph structure and
feature information.

* Most GNN models can fit into the Message Passing Paradigm.

Initial Features/Embeddings of Each Node Output Features/Embeddings of Each Node

Message Passing Paradigm

/
2 I C
| [

~

Current Neighbor States

_

/

o o

I]
Current Node State h™1

Message Passing Paradigm

/
2 I C
| [

Current Neighbor States

\

_ /

!

/
MO -0
00

_

Messages from Neighbors

~

/

o o

I]
Current Node State h™1

Message Passing Paradigm

/
2 I C
| [

Current Neighbor States

\

_ /

!

/
MO -0
00

_

Messages from Neighbors

~

/

o o

I]
Current Node State h™1

-

N

my

Aggregate and Reduce
Received Messages /

Message Passing Paradigm

/
2 I C
| [

Current Neighbor States

\

_ /

!

/
MO -0
00

_

Messages from Neighbors

~

/

o o

I]
Current Node State h™1

4 R

Aggregate and Reduce

\ Received Messages /

\
7/

©
—

Next Node State A},

Dynamic GNNSs

* Most of existing GNN frameworks assume that the input graph is
static.

* Real-world graphs are often dynamic in nature.
* Representation: a time series of snapshots of the graph.

« Common approach: Combine GNNs and RNNs.
o GNNs for encoding spatial information (graph structure)
o RNNs for encoding temporal information 0. oelg o

LSTM

Gate i

[Wyixt

[Whihe—1

GRU

Gate f

[WyrXe

Gater

[Wier Xt
[Whrht—l \

| Whphey |

Gate c

[WieXt

[thht—l \

Gate z

ek @

[thht—l)

Gate o

[WyoXt

[Who ht—l j

G R U - Time-independent

Gater

[Whrht—l

Gate z

[thht—l

%
<

0]
Q
(=gl
o
-~

0] 0] 0]
Q Q Q
Ilﬂ- Ilﬂ- Ilﬂ- II
o o o
(=) o ~ .

GRU

Gater

Gate z

- Time-independent
- Time-dependent

%
<

0]
Q
(=gl
o
-~

0] 0] 0]
Q Q Q
Ilﬂ- Ilﬂ- Ilﬂ- II
o o o
(=) o ~ .

GRU

Gater

Gate z

- Time-independent
- Time-dependent

G 'd p h I_S |\/| G ra p h G R U) Time-independent
S

Time-dependent

Gate i

Gater Gate h

Gate f

=

Gate c

Gate z

Gate o

Challenge

Gate i

Gate f

Gatec

Gate o

1: Redundant Neighborhood Aggregation

GraphLSTM

* Two categories of graph convolutions.

> [Time-independent graph convolution
depends on current representations of nodes.

> [Time-dependent graph convolution
depends on previous hidden states.

* Redundancy: Graph convolutions in the same
category perform same neighborhood
aggregation.

Challenge #2: Inefficient Distributed Training

* No existing systems for training static GNNs, for example, DGL,
support distributed dynamic GNN training in an efficient way.

* Static GNN training:
 Partitioning both the graph structure and node features across machines.
* Using data parallelism to train a static GNN.

e Can we partition each snapshot individually?
" Partitioning and maintaining a large number of snapshots can be expensive.
= The graph structure and the node features in each snapshot may vary.

Cached Message Passing BN rimeindependent
_ Time-dependent

Gate i

GraphLSTM

Typical Message Passing Paradigm of GNN:

l — lepl-1 -1 ,l-1
mu—)v — M (hv ,hu ,eu_)v

:

Cached Message Passing BN rimeindependent
_ Time-dependent

Gate i

GraphLSTM

Typical Message Passing Paradigm of GNN:

The results after the message passing can be reused
for all graph convolution in the same category.

:

Cached Message Passing

* Dynamic graphs are often trained using sequence-to-sequence

models in a sliding-window fashion.

Encoder

GraphRNN GraphRNN

Layer 2

Layer 1 GraphRNN GraphRNN

=1 t=2

GraphRNN

Decoder

H
GraphRNN

GraphRNN GraphRNN

\ J
|

Teacher States (Ground Truth)

Cached Message Passing

* Dynamic graphs are often trained using sequence-to-sequence
models in a sliding-window fashion.

Decoder

Encoder

H

GraphRNN GraphRNN GraphRNN

Layer 2 GraphRNN

GraphRNN GraphRNN GraphRNN

Layer 1

t=2 t=3 t=4 t=5
- 3 [B] [&
® O

Cached Message Passing

* Dynamic graphs are often trained using sequence-to-sequence
models in a sliding-window fashion.

Encoder Decoder

H

Layer 2 GraphRNN GraphRNN

Layer 1 GraphRNN GraphRNN

t=2 t=3 t=4 t=5
| 89 = |2 (A

Neighborhood aggregation has already been performed in previous sequence(s)!

Cached Message Passi

Snapshot t

Snapshot t-n

ng

Gate i

GraphLSTM

Cached Message Passi

ng

Msg. Passin
s

m Msg. Passing |

Snapshot t

Snapshot t-n

Gate i

GraphLSTM

Cached Message Passi

ng

Msg. Passin

m Msg. ,!?,as‘s"i’ﬁg X

Gate i

Coche st PUT
ache Store 4 pur

Snapshot t)

Snapshot t-n

GraphLSTM

Cached Message Passi

ng

Msg. Passin

m Msg. ,!?,as‘s"i’ﬁg X

Gate i

Coche st PUT
ache Store 4 pur

Snapshot t)

Snapshot t-n

GraphLSTM

Cached Message Passi

ng

Gate i
xi

Msg. Passin
srERE

m Msg. ,!?,as‘s"i’ﬁg

:

Coche st PUT
ache Store 4 pur

Snapshot t)

Snapshot t-n

Moy

GraphLSTM

Distributed DGNN Training

t=n
M, S}‘ 1
_
t=n
Mz{ ..; |

i,

i
—
< ()
>
©
—l

t

artitioned Snapshots & Input Features Layer 1 Layer 2 Layer K
=1
—
) (@) (Ba) (B

A=)

t

DynaGraph AP]

cache() Cache caller function outputs; do nothing if already cached.
msg_pass() Computes intermediate message passing results.
update() Computes output representation from intermediate message

passing results.

integrate() Integrates a GNN into a GraphRNN to create a dynamic GNN.

stack_seq_model() Stacks dynamic GNN layers to an encoder-decoder structure.

Implementation & Evaluation

e Implemented on Deep Graph Library (DGL) v0.7

* Evaluated using 8 machines, each with 2 NVIDIA Tesla V100 GPUs
= METR-LA: 207 nodes/snapshots, |F|=2, |S|= 34K
= PEMS-BAY: 325 nodes/snapshots, |F|=2, |S|= 52K
= METR-LA-Large: 0.4m nodes/snapshots, |F|=128, |S|= 34k
= PEMS-BAY-Large: 0.7m nodes/snapshots, |F|=128, |S|= 52k

e Several Dynamic GNN architectures
= GCRN-GRU, GCRN-LSTM [ICONIP ‘18]
= DCRNN [ICLR ‘18]

DynaGraph Single-Machine Performance

250

Up to 2.31x Speedup

DCRNN GCRN-GRU GCRN-LSTM DCRNN GCRN-GRU GCRN-LSTM

8 & g

Average Epoch Time(s)

(94
o

o

META-LA PEMS-BAY
B DGL = DynaGraph

DynaGraph Distributed Performance

6000

Up to 2.23x Speedup

5000

3000
;

DCRNN GCRN-GRU GCRN-LSTM DCRNN GCRN-GRU GCRN-LSTM

Average Epoch Time(s)

META-LA-Large PEMS-BAY-Large
B DGL ®& DynaGraph

DynaGraph Scaling

Throughput (snapshots/sec)

Throughput (snapshots/sec)

~
o

[e2)
o

w1
o

IS
o

w
o

N
o

=
o

o

(o]
o

~
o

[e2)
o

w1
o

IS
o

w
o

N
o

=
o

o

2(4) 4(8) 8(16)

2(4) 4(8) 8(16)
Machines (# GPUs)

—e—DGL -<-DynaGraph

GCRN-GRU

GCRN-LSTM

Summary

* Supporting dynamic graphs is increasingly important for enabling
many GNN applications.

* Existing GNN systems mainly focus on static graphs and static GNNSs.

* Dynamic GNN architectures combine GNN techniques and temporal
embedding techniques like RNNs.

* DynaGraph enables dynamic GNN training at scale.
* Several techniques to reuse intermediate results.
 Efficient distributed training.

* Outperforms state-of-the-art solutions.

Thank you!
Contact: mingyu.guan@gatech.edu

