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Graph Neural Networks (GNNs)

* The recent past has seen an increasing interest in GNNs.

* Node embeddings are generated by combining graph structure and
feature information.

* Most GNN models can fit into the Message Passing Paradigm.
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Dynamic GNNSs

* Most of existing GNN frameworks assume that the input graph is
static.

* Real-world graphs are often dynamic in nature.
* Representation: a time series of snapshots of the graph.

« Common approach: Combine GNNs and RNNs.
o GNNs for encoding spatial information (graph structure)
o RNNs for encoding temporal information 0. oelg o



LSTM

Gate i

[ Wyixt

[ Whihe—1

GRU

Gate f

[ WyrXe

Gater

[ Wier Xt
[ Whrht—l \

| Whphey |

Gate c

[ WieXt

[ thht—l \

Gate z

ek @

[ thht—l )

Gate o

[ WyoXt

[ Who ht—l j




G R U - Time-independent

Gater

[ Whrht—l

Gate z

[ thht—l




%
<

0]
Q
(=gl
o
-~

0] 0] 0]
Q Q Q
Ilﬂ- Ilﬂ- Ilﬂ- II
o o o
(=) o ~ .

GRU

Gater

Gate z

- Time-independent
- Time-dependent




%
<

0]
Q
(=gl
o
-~

0] 0] 0]
Q Q Q
Ilﬂ- Ilﬂ- Ilﬂ- II
o o o
(=) o ~ .

GRU

Gater

Gate z

- Time-independent
- Time-dependent




G 'd p h I_S |\/| G ra p h G R U ) Time-independent
S

Time-dependent

Gate i

Gater Gate h

Gate f

=

Gate c

Gate z

Gate o




Challenge
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1: Redundant Neighborhood Aggregation

GraphLSTM

* Two categories of graph convolutions.

> [ Time-independent graph convolution
depends on current representations of nodes.

> [ Time-dependent graph convolution
depends on previous hidden states.

* Redundancy: Graph convolutions in the same
category perform same neighborhood
aggregation.



Challenge #2: Inefficient Distributed Training

* No existing systems for training static GNNs, for example, DGL,
support distributed dynamic GNN training in an efficient way.

* Static GNN training:
 Partitioning both the graph structure and node features across machines.
* Using data parallelism to train a static GNN.

e Can we partition each snapshot individually?
" Partitioning and maintaining a large number of snapshots can be expensive.
= The graph structure and the node features in each snapshot may vary.
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Typical Message Passing Paradigm of GNN:

The results after the message passing can be reused
for all graph convolution in the same category.

:




Cached Message Passing

* Dynamic graphs are often trained using sequence-to-sequence

models in a sliding-window fashion.
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Cached Message Passing

* Dynamic graphs are often trained using sequence-to-sequence
models in a sliding-window fashion.
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Cached Message Passing

* Dynamic graphs are often trained using sequence-to-sequence
models in a sliding-window fashion.

Encoder Decoder
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Neighborhood aggregation has already been performed in previous sequence(s)!
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Distributed DGNN Training
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DynaGraph AP]

cache() Cache caller function outputs; do nothing if already cached.
msg_pass() Computes intermediate message passing results.
update() Computes output representation from intermediate message

passing results.

integrate() Integrates a GNN into a GraphRNN to create a dynamic GNN.

stack_seq_model() Stacks dynamic GNN layers to an encoder-decoder structure.



Implementation & Evaluation

e Implemented on Deep Graph Library (DGL) v0.7

* Evaluated using 8 machines, each with 2 NVIDIA Tesla V100 GPUs
= METR-LA: 207 nodes/snapshots, |F|=2, |S|= 34K
= PEMS-BAY: 325 nodes/snapshots, |F|=2, |S|= 52K
= METR-LA-Large: 0.4m nodes/snapshots, |F|=128, |S|= 34k
= PEMS-BAY-Large: 0.7m nodes/snapshots, |F|=128, |S|= 52k

e Several Dynamic GNN architectures
= GCRN-GRU, GCRN-LSTM [ICONIP ‘18]
= DCRNN [ICLR ‘18]



DynaGraph Single-Machine Performance
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DynaGraph Distributed Performance
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DynaGraph Scaling
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Summary

* Supporting dynamic graphs is increasingly important for enabling
many GNN applications.

* Existing GNN systems mainly focus on static graphs and static GNNSs.

* Dynamic GNN architectures combine GNN techniques and temporal
embedding techniques like RNNs.

* DynaGraph enables dynamic GNN training at scale.
* Several techniques to reuse intermediate results.
 Efficient distributed training.

* Outperforms state-of-the-art solutions.

Thank you!
Contact: mingyu.guan@gatech.edu



