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Motivation

Growth of Manycore Processors

• Processor manufacturers have increased the 
number of cores

• Manycore processors are now prevalent

• in all types of computing devices

• include mobile devices, servers and h/w accelerators

• Intel Xeon Phi has up to 76 cores, 304 threads 
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Motivation

Intel Xeon Processors vs. Xeon Phi Processors

• 3.17x more cores

• 6.33x more threads

• 2x more registers

Xeon Processors Xeon Phi Processors

Cores Up to 24 cores Up to 76 cores

Threads Up to 48 threads Up to 304 threads

Vector 
Registers

16 * 512-bit registers 32 * 512-bit registers
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Motivation

Inefficiency of Existing Schedulers

• When CFS scheduler was introduced, 4-core 
servers were dominant in datacenters

• Now, 32-core servers are standard in data 
centers

• Moreover, more than 100 cores are becoming 
popular
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Motivation

Inefficiency of Existing Schedulers

• The revolution of OS schedulers is slow to 
follow up emerging manycore processors

• They have various lock primitives

• Frequent context switches

• But, these are less important in manycore processors 
like Xeon Phi

• Due to these issues, we propose the new OS 
scheduler, FLSCHED

• Lockless design

• Less context switches
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Motivation

Inefficiency of Existing Schedulers

• Hackbench on a Xeon Phi

• Frequent context switches → slower
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Motivation

Inefficiency of Existing Schedulers

• Comparison on NAS Parallel Benchmark

• Locks in the schedulers degrade the performance
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Design

FLSCHED

• Feather-Like Scheduler

• Designed for manycore processors 

• like Intel Xeon Phi

• Lockless design

• Minimizing the number of context switches
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Design

Locklessness

• Core scheduler code includes highest number of 
locks

• FLSCHED is implemented without locks in itself

• by restructuring and optimizing the mechanisms
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Design

Locklessness: Comparing to RR

• 2 locks are for the runtime statistics

• It is NOT critical to make scheduling decisions on 
Xeon Phi

• 5 locks are to balance the load of cores

• FLSCHED doesn’t use periodic load balance

• 8 locks are used for bandwidth control mechanism

• It is not important features for Xeon Phi

• Now, We removed 15 locks

• Since Xeon Phi processors are mostly used for HPC
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Design

Less Context Switches

• FLSCHED delays all settings of the reschedule 
flag to avoid context switches as many as 
possible

• Computation throughput is MORE important than 
responsiveness, and fairness

• Since Xeon Phi processors are mostly used for HPC
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Design

Less Context Switches

• Most of preemption is incurred by priority

• Priority preemption is NOT crucial for Xeon Phi

• FLSCHED does not immediately perform preemption

• Instead, FLSCHED moves the location of tasks in 
runqueues and performs normal task switches in later 
term

• Since Xeon Phi processors are mostly used for HPC
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Design

Faster and efficient scheduling decision

• Scheduling information updates are minimized

• To make scheduler faster and more efficient

• Remove “update_curr_fair” function

• It takes very short time

• But it is called huge number of times with a 
spinlock

• It can be non-negligible overhead in manycore 
processors

• Instead, FLSCHED works based on a given time 
slice with RR
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Design

Faster and efficient scheduling decision

• FLSCHED does not provide 3 scheduling features:

• Control groups

• Group scheduling

• Autogroup scheduling

• These are considered NOT important features for 
manycore systems like Xeon Phi

• To get the great performance improvement, 
sometimes we have to yield small things
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Evaluation

Evaluation Environments

• Intel Xeon E5-2699

• 18 cores

• 36 threads

• 64 GB main memory

• Intel Xeon Phi 31S1P

• 57 cores

• 228 threads

• 8 GB internal memory
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Evaluation

Performance comparison of NAS Parallel Benchmark

• It shows better performance with FLSCHED
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Evaluation

Performance comparison of NAS Parallel Benchmark

• Execution time of spinlock while executing NPB
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Evaluation

Performance comparison of hackbench

• Execution time and number of context switches

One group uses 40 tasks

In X axis,

‘p’ with the number denotes pipe
The other denotes socket
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Evaluation

Performance comparison of hackbench

• Execution count and time of scheduler functions

Total Execution Time:
CFS: 28.037s
FLSCHED: 11.102s
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Conclusion

FLSCHED

• Feather-Like Scheduler

• Designed for manycore processors like Intel Xeon Phi

• Lockless design

• Minimizing the number of context switches

• FLSCHED shows better performance than CFS up to

• 1.73x for HPC applications

• 3.12x for micro-benchmarks
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