
FLSCHED: A Lockless and Lightweight Approach 
to OS Scheduler for Xeon Phi

Heeseung Jo Chonbuk National University

Woonhak Kang Georgia Institute of Technology

Changwoo Min Virginia Tech

Taesoo Kim Georgia Institute of Technology



2

Motivation

Growth of Manycore Processors

• Processor manufacturers have increased the 
number of cores

• Manycore processors are now prevalent

• in all types of computing devices

• include mobile devices, servers and h/w accelerators

• Intel Xeon Phi has up to 76 cores, 304 threads 



3

Motivation

Intel Xeon Processors vs. Xeon Phi Processors

• 3.17x more cores

• 6.33x more threads

• 2x more registers

Xeon Processors Xeon Phi Processors

Cores Up to 24 cores Up to 76 cores

Threads Up to 48 threads Up to 304 threads

Vector 
Registers

16 * 512-bit registers 32 * 512-bit registers



4

Motivation

Inefficiency of Existing Schedulers

• When CFS scheduler was introduced, 4-core 
servers were dominant in datacenters

• Now, 32-core servers are standard in data 
centers

• Moreover, more than 100 cores are becoming 
popular



5

Motivation

Inefficiency of Existing Schedulers

• The revolution of OS schedulers is slow to 
follow up emerging manycore processors

• They have various lock primitives

• Frequent context switches

• But, these are less important in manycore processors 
like Xeon Phi

• Due to these issues, we propose the new OS 
scheduler, FLSCHED

• Lockless design

• Less context switches



6

Motivation

Inefficiency of Existing Schedulers

• Hackbench on a Xeon Phi

• Frequent context switches → slower



7

Motivation

Inefficiency of Existing Schedulers

• Comparison on NAS Parallel Benchmark

• Locks in the schedulers degrade the performance



8

Design

FLSCHED

• Feather-Like Scheduler

• Designed for manycore processors 

• like Intel Xeon Phi

• Lockless design

• Minimizing the number of context switches



9

Design

Locklessness

• Core scheduler code includes highest number of 
locks

• FLSCHED is implemented without locks in itself

• by restructuring and optimizing the mechanisms



10

Design

Locklessness: Comparing to RR

• 2 locks are for the runtime statistics

• It is NOT critical to make scheduling decisions on 
Xeon Phi

• 5 locks are to balance the load of cores

• FLSCHED doesn’t use periodic load balance

• 8 locks are used for bandwidth control mechanism

• It is not important features for Xeon Phi

• Now, We removed 15 locks

• Since Xeon Phi processors are mostly used for HPC



11

Design

Less Context Switches

• FLSCHED delays all settings of the reschedule 
flag to avoid context switches as many as 
possible

• Computation throughput is MORE important than 
responsiveness, and fairness

• Since Xeon Phi processors are mostly used for HPC



12

Design

Less Context Switches

• Most of preemption is incurred by priority

• Priority preemption is NOT crucial for Xeon Phi

• FLSCHED does not immediately perform preemption

• Instead, FLSCHED moves the location of tasks in 
runqueues and performs normal task switches in later 
term

• Since Xeon Phi processors are mostly used for HPC



13

Design

Faster and efficient scheduling decision

• Scheduling information updates are minimized

• To make scheduler faster and more efficient

• Remove “update_curr_fair” function

• It takes very short time

• But it is called huge number of times with a 
spinlock

• It can be non-negligible overhead in manycore 
processors

• Instead, FLSCHED works based on a given time 
slice with RR



14

Design

Faster and efficient scheduling decision

• FLSCHED does not provide 3 scheduling features:

• Control groups

• Group scheduling

• Autogroup scheduling

• These are considered NOT important features for 
manycore systems like Xeon Phi

• To get the great performance improvement, 
sometimes we have to yield small things



15

Evaluation

Evaluation Environments

• Intel Xeon E5-2699

• 18 cores

• 36 threads

• 64 GB main memory

• Intel Xeon Phi 31S1P

• 57 cores

• 228 threads

• 8 GB internal memory



16

Evaluation

Performance comparison of NAS Parallel Benchmark

• It shows better performance with FLSCHED



17

Evaluation

Performance comparison of NAS Parallel Benchmark

• Execution time of spinlock while executing NPB



18

Evaluation

Performance comparison of hackbench

• Execution time and number of context switches

One group uses 40 tasks

In X axis,

‘p’ with the number denotes pipe
The other denotes socket



19

Evaluation

Performance comparison of hackbench

• Execution count and time of scheduler functions

Total Execution Time:
CFS: 28.037s
FLSCHED: 11.102s



20

Conclusion

FLSCHED

• Feather-Like Scheduler

• Designed for manycore processors like Intel Xeon Phi

• Lockless design

• Minimizing the number of context switches

• FLSCHED shows better performance than CFS up to

• 1.73x for HPC applications

• 3.12x for micro-benchmarks



Thank you

If you have any questions, 
Please contact the first author via email:

Prof. Heeseung Jo
heeseung@jbnu.ac.kr


