
Preventing	exploits	against	
memory-corruption	vulnerabilities

Chengyu	Song

Georgia	Tech

Agenda

• Memory corruption vulnerability

• Thesis Statement

• Approaches
• SDCG

• Kenali

• HDFI

• Conclusion

Memory	corruption	vulnerability

• One of most prevalent vulnerabilities
• Very common for C/C++ programs

• One of most devastating vulnerabilities
• Highly exploitable, e.g., arbitrary code execution

• One of most widely exploited vulnerabilities

Root	causes

• Spatial errors
• Missing bound check, incorrect bound check, format string,

type confusion, integer overflow, etc.

• Temporal errors
• Use-after-free, uninitialized data

Exploit	techniques

• Code injection (modification) attacks

• Control flow hijacking attacks

• Data-oriented attacks

• Information leak

• Uninitialized data use

Defense	mechanisms	(1)

• Memory error detector

• Spatial: adding bound checks for memory
accesses

• Software-based: CCured, Cyclone, SoftBound, etc.

• Hardware-based: HardBound, CHERI, WatchDog[Lite], MPX,
etc.

• Temporal: tracking initialization/liveness
• Software-based: memory sanitizer, CETS, DangNull

• Hardware-based: SafeProc, WatchDogLite

Defense	mechanisms	(2)

• Exploit prevention techniques
• Code corruption/injection: W^X, ret2usr protection

• Control flow hijacking: stack cookies, CFI, vtable pointer
protection, etc.

• Data-oriented attacks: SFI, DFI

• Code pointers leak: PointerGuard, ASLR-Guard

• Code leak: execute-only memory

• Generic information leak: DFI, DIFT

Summary	of	existing	mechanisms

• Memory error detectors
• Pros: fundamentally solves the problem

• Cons: high performance overhead, even with hardware

• Exploit prevention techniques
• Pros: lower performance overhead

• Cons: bypassable

Problem	Statement

• How to build principled and practical defense
techniques against memory-corruption-based exploits

• Two goals
• Principled: cannot be easily bypassed

• Practical: low performance overhead, easy to adopt

Approaches

• Preventing code injection attacks: SDCG [NDSS’15]

• Preventing data-oriented attacks: Kenali [NDSS’16]

• Improving security and performance: HDFI [SP’16]

Approaches

• Preventing code injection attacks: SDCG [NDSS’15]

• Preventing data-oriented attacks: Kenali [NDSS’16]

• Improving security and performance: HDFI [SP’16]

Code	Injection	Attacks	?!

• Dates back to the Morris worm

• Used to be the most popular exploit technique

• Should have been eliminated by data execution
prevention (DEP)

Rising	from	dead

• Dynamic code generation
• Creates native code at runtime

• Widely used by
• Just-in-time (JIT) compilers and dynamic binary translators

(DBT)

• The confliction
• Code cache must be both writable and executable

A	$50k	attack

• Mobile Pwn2Own Autumn 2013 – Chrome browser on
Android

1) Exploited an integer overflow vulnerability to overwrite the size attribute of a
WFT::ArrayBuffer object à arbitrary memory read/write capability

2) Leverage the arbitrary memory read capability to traverse memory and
locate the code cache;

3) Leverage the arbitrary memory write capability to overwrite a JavaScript
function with shellcode that allows attackers to invoke any function with any
argument;

4) Leverage the arbitrary code execution capability to take out next attack
step.

A	simple	idea

• Enforce that code pages can never be both writable
and executable at the same time

• Has been adopted by some JIT compilers

• Mobile Safari, Internet Explorer, Firefox

Code Cache
(RX)

Thread

Code Cache
(WR)

Code Cache
(RX)

Code Generator Running

Generated Code Runningt1 t2

Exploiting	race	condition

1) Synchronization

2) Thread-A triggers the code generation

3) Thread-B attacks thread-A’s code cache

4) Thread-A execute injected shell code

Code Cache
(RX)

Thread A

Thread B

Code Cache
(WR)

Code Cache
(RX)

Code Generator Running

Generated Code Runningt1 t2

1

2 3 4

How	realistic	is	the	attack

• Multi-thread programming is widely supported

• Thread synchronization latencies are usually smaller
than the attack window

• Page access permission change can enlarge the
attack window

• Our preliminary experiment had 91% success rate

Design	principles

• Only the code generator can write to the code cache

• W^X policy should always be enforced
• including temporal: WR à RX

SDCG:	overview

• A multi-process-based protection scheme

SDT = software dynamic translator

Implementation	challenges

• Memory map
synchronization

• Remote procedure call
(RPC)

• Access permission
enforcement

Untrusted
Thread

Trusted
Thread

SDT
Thread

mem sync

RPC

syscall
filtering

Two	Prototypes

• Sharable infrastructure (~500 LoC)
• Seccomp-sandbox (from Google Chrome)

• Shared memory pool

• System call filtering

• SDT-specific modification
• Strata (~1000 LoC)

• V8 (~2500 LoC)

Performance	overhead	(micro)

• RPC latency
• Average roundtrip: 8 – 9 µs

• Requires stack copy: < 24%

• Cache coherency overhead
• 3x – 4x slower if the execution thread and the translation

thread is not on the same core

Performance	overhead	(macro)

• SPEC CINT 2006 (Strata)
• 1.46% for pinned schedule

• 2.05% for free schedule

• JavaScript benchmarks
• 6.9% for 32-bit build, 5.65% for 64-bit build

• Comparison: NaCl-JIT 79% for 32-bit build

Summary

• Target exploit technique
• Code inject attack

• Defense principle
• W^X policy (including temporal)

• Practical criteria
• Performance overhead: low

• Adoption difficulty: low

Approaches

• Preventing code injection attacks: SDCG [NDSS’15]

• Preventing data-oriented attacks: Kenali [NDSS’16]

• Preventing illegal data-flow: HDFI [SP’16]

• Remaining tasks

Why	kernel

• The de-facto trusted computing base (TCB)

• Foundation of upper level security mechanisms (e.g.,
app sandbox)

• Kernel vulnerabilities are not rare
• Written in C

• Heavy optimizations

Why	privilege	escalation	attacks

• One of the most powerful attacks

• Most popular attack against kernel
• Sandbox bypassing

• Jailbreak / rooting

• Hard to prevent

Challenge	1:	hard	to	prevent

Control-flow hijacking
Bypass the check

Data-oriented attacks
Manipulate the check

1 static int acl_permission_check
2 (struct inode *inode, int mask)
3 {
4 unsigned int mode = inode->i_mode;
5
6 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
7 mode >>= 6;

8 else if (in_group_p(inode->i_gid))
9 mode >>= 3;

10
11 if ((mask & ~mode &
12 (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)

13 return 0;
14 return -EACCES;
15 }

Example 1: The decision making function of the Linux
DAC subsystem.

3.2 Proposal
To solve the problem, I plan to leverage the power of
program analysis. Specifically, for each access control
mechanism, I want to

1. Build an abstract model based on data and control
dependencies;

2. Manually annotate some seed data;

3. Use program analysis to map concrete program
data structures to the abstractions in the model.

Example 1 shows the decision making process of the
DAC subsystem. In this example, the fsuid and fsgid
are subject IDs; the i_uid and i_gid are object IDs;
and the i_mode is the policy. So one possible abstrac-
tion is: (1) object id has data depend (bind by compare
operation) on subject id; (2) policy has control depend
on subject ID and object ID; and (3) return value has
control depend on mode.

Since the subject ID is relatively easy to annotate, we
can first manually assign fsuid and fsgid as subject IDs.
Then the system to be built will automatically identify
inode->i_uid and inode->i_gid as object IDs; and
inode->i_mode as the policy data.

4 Timeline
1. Infrastructure build. Implement a context-

sensitive field-sensitive inter-procedure data flow
and control flow analysis infrastructure for analyz-
ing the Linux kernel. Mid April.

2. Abstraction design. Design the data flow and con-
trol flow abstraction for detecting sensitive data.
End of April.

3. Evaluation. Evaluate on the Linux kernel. Early
May.

References
[1] Overview of linux kernel security features. http:

//www.linux.com/learn/docs/727873-overview-

of-linux-kernel-security-features/, 2013.
[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-

Flow Integrity. In ACM Conference on Computer and Commu-
nications Security, 2005.

[3] T. Bletsch, X. Jiang, and V. Freeh. Mitigating Code-reuse
Attacks with Control-flow Locking. In Annual Computer
Security Applications Conference (ACSAC), 2011.

[4] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-
control-data attacks are realistic threats. In Usenix Security
Symposium (Security), 2005.

[5] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stackguard: Au-
tomatic adaptive detection and prevention of buffer-overflow
attacks. In Usenix Security Symposium (Security), 1998.

[6] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete
Control-Flow Integrity for Commodity Operating System Ker-
nels. In IEEE Symposium on Security and Privacy (Oakland),
2014.

[7] M. Kerrisk. Lce: The failure of operating systems and how we
can fix it. http://lwn.net/Articles/524952/, 2012.

[8] M. Kerrisk. Namespaces in operation, part 1: namespaces
overview. http://lwn.net/Articles/531114/, 2013.

[9] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song. Code-pointer integrity. In Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[10] Microsoft Visual Studio 2005. Image has safe exception han-
dlers. http://msdn.microsoft.com/en-us/library/

9a89h429%28v=vs.80%29.aspx.
[11] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.

SoftBound: Highly Compatible and Complete Spatial Memory
Safety for C. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009.

[12] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
CETS: Compiler Enforced Temporal Safety for C. In Interna-
tional Symposium on Memory Management (ISMM), 2010.

[13] J. Newsome and D. Song. Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and Signature Generation of Ex-
ploits on Commodity Software. In Annual Network and Dis-
tributed System Security Symposium, 2005.

[14] B. Niu and G. Tan. Monitor Integrity Protection with Space
Efficiency and Separate Compilation. In ACM Conference on
Computer and Communications Security, 2013.

[15] B. Niu and G. Tan. Modular Control-flow Integrity. In ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2014.

[16] P. Philippaerts, Y. Younan, S. Muylle, F. Piessens, S. Lach-
mund, and T. Walter. Code pointer masking: Hardening ap-
plications against code injection attacks. In Conference on
Detection of Intrusions and Malware and Vulnerability Assess-
ment (DIMVA), 2011.

3

Code Injection Attack
Disable the check

Challenge	2:	performance

• Protecting all data is not practical
• Secure Virtual Architecture [SOSP’07]

• Enforces kernel-wide memory safety

• Performance overhead: 5.34x ~ 13.10x (LMBench)

Our	approach

• Only protects a subset of data that is enough to
enforce access control invariants

• Complete mediation

• Control-data à Code Pointer Integrity [OSDI’14]

• Tamper proof

• Non-control-data used in security checks à this work

• Correctness

Step	1:	discover	all	related	data	

• Observation: OS kernels have well defined error code
for security checks (when they fail)

• POSIX: EPERM, EACCESS, etc.
• Windows: ERROR_ACCESS_DENIED, etc.

• Solution: leverage this implicit semantic to
automatically infer security checks

• Benefits
• Soundness: capable of detecting all security related data (as

long as there is no semantic errors)
• Automated: no manual annotation required

A	simple	example

Step	1:	collect	return	values

1 static int acl_permission_check
2 (struct inode *inode, int mask)
3 {
4 unsigned int mode = inode->i_mode;
5
6 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
7 mode >>= 6;

8 else if (in_group_p(inode->i_gid))
9 mode >>= 3;

10
11 if ((mask & ~mode &
12 (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)

13 return 0;
14 return -EACCES;
15 }

Example 1: The decision making function of the Linux
DAC subsystem.

3.2 Proposal
To solve the problem, I plan to leverage the power of
program analysis. Specifically, for each access control
mechanism, I want to

1. Build an abstract model based on data and control
dependencies;

2. Manually annotate some seed data;

3. Use program analysis to map concrete program
data structures to the abstractions in the model.

Example 1 shows the decision making process of the
DAC subsystem. In this example, the fsuid and fsgid
are subject IDs; the i_uid and i_gid are object IDs;
and the i_mode is the policy. So one possible abstrac-
tion is: (1) object id has data depend (bind by compare
operation) on subject id; (2) policy has control depend
on subject ID and object ID; and (3) return value has
control depend on mode.

Since the subject ID is relatively easy to annotate, we
can first manually assign fsuid and fsgid as subject IDs.
Then the system to be built will automatically identify
inode->i_uid and inode->i_gid as object IDs; and
inode->i_mode as the policy data.

4 Timeline
1. Infrastructure build. Implement a context-

sensitive field-sensitive inter-procedure data flow
and control flow analysis infrastructure for analyz-
ing the Linux kernel. Mid April.

2. Abstraction design. Design the data flow and con-
trol flow abstraction for detecting sensitive data.
End of April.

3. Evaluation. Evaluate on the Linux kernel. Early
May.

References
[1] Overview of linux kernel security features. http:

//www.linux.com/learn/docs/727873-overview-

of-linux-kernel-security-features/, 2013.
[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-

Flow Integrity. In ACM Conference on Computer and Commu-
nications Security, 2005.

[3] T. Bletsch, X. Jiang, and V. Freeh. Mitigating Code-reuse
Attacks with Control-flow Locking. In Annual Computer
Security Applications Conference (ACSAC), 2011.

[4] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-
control-data attacks are realistic threats. In Usenix Security
Symposium (Security), 2005.

[5] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stackguard: Au-
tomatic adaptive detection and prevention of buffer-overflow
attacks. In Usenix Security Symposium (Security), 1998.

[6] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete
Control-Flow Integrity for Commodity Operating System Ker-
nels. In IEEE Symposium on Security and Privacy (Oakland),
2014.

[7] M. Kerrisk. Lce: The failure of operating systems and how we
can fix it. http://lwn.net/Articles/524952/, 2012.

[8] M. Kerrisk. Namespaces in operation, part 1: namespaces
overview. http://lwn.net/Articles/531114/, 2013.

[9] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song. Code-pointer integrity. In Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[10] Microsoft Visual Studio 2005. Image has safe exception han-
dlers. http://msdn.microsoft.com/en-us/library/

9a89h429%28v=vs.80%29.aspx.
[11] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.

SoftBound: Highly Compatible and Complete Spatial Memory
Safety for C. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009.

[12] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
CETS: Compiler Enforced Temporal Safety for C. In Interna-
tional Symposium on Memory Management (ISMM), 2010.

[13] J. Newsome and D. Song. Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and Signature Generation of Ex-
ploits on Commodity Software. In Annual Network and Dis-
tributed System Security Symposium, 2005.

[14] B. Niu and G. Tan. Monitor Integrity Protection with Space
Efficiency and Separate Compilation. In ACM Conference on
Computer and Communications Security, 2013.

[15] B. Niu and G. Tan. Modular Control-flow Integrity. In ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2014.

[16] P. Philippaerts, Y. Younan, S. Muylle, F. Piessens, S. Lach-
mund, and T. Walter. Code pointer masking: Hardening ap-
plications against code injection attacks. In Conference on
Detection of Intrusions and Malware and Vulnerability Assess-
ment (DIMVA), 2011.

3

A	simple	example

Step	2:	collect	conditional	branches

1 static int acl_permission_check
2 (struct inode *inode, int mask)
3 {
4 unsigned int mode = inode->i_mode;
5
6 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
7 mode >>= 6;

8 else if (in_group_p(inode->i_gid))
9 mode >>= 3;

10
11 if ((mask & ~mode &
12 (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)

13 return 0;
14 return -EACCES;
15 }

Example 1: The decision making function of the Linux
DAC subsystem.

3.2 Proposal
To solve the problem, I plan to leverage the power of
program analysis. Specifically, for each access control
mechanism, I want to

1. Build an abstract model based on data and control
dependencies;

2. Manually annotate some seed data;

3. Use program analysis to map concrete program
data structures to the abstractions in the model.

Example 1 shows the decision making process of the
DAC subsystem. In this example, the fsuid and fsgid
are subject IDs; the i_uid and i_gid are object IDs;
and the i_mode is the policy. So one possible abstrac-
tion is: (1) object id has data depend (bind by compare
operation) on subject id; (2) policy has control depend
on subject ID and object ID; and (3) return value has
control depend on mode.

Since the subject ID is relatively easy to annotate, we
can first manually assign fsuid and fsgid as subject IDs.
Then the system to be built will automatically identify
inode->i_uid and inode->i_gid as object IDs; and
inode->i_mode as the policy data.

4 Timeline
1. Infrastructure build. Implement a context-

sensitive field-sensitive inter-procedure data flow
and control flow analysis infrastructure for analyz-
ing the Linux kernel. Mid April.

2. Abstraction design. Design the data flow and con-
trol flow abstraction for detecting sensitive data.
End of April.

3. Evaluation. Evaluate on the Linux kernel. Early
May.

References
[1] Overview of linux kernel security features. http:

//www.linux.com/learn/docs/727873-overview-

of-linux-kernel-security-features/, 2013.
[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-

Flow Integrity. In ACM Conference on Computer and Commu-
nications Security, 2005.

[3] T. Bletsch, X. Jiang, and V. Freeh. Mitigating Code-reuse
Attacks with Control-flow Locking. In Annual Computer
Security Applications Conference (ACSAC), 2011.

[4] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-
control-data attacks are realistic threats. In Usenix Security
Symposium (Security), 2005.

[5] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stackguard: Au-
tomatic adaptive detection and prevention of buffer-overflow
attacks. In Usenix Security Symposium (Security), 1998.

[6] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete
Control-Flow Integrity for Commodity Operating System Ker-
nels. In IEEE Symposium on Security and Privacy (Oakland),
2014.

[7] M. Kerrisk. Lce: The failure of operating systems and how we
can fix it. http://lwn.net/Articles/524952/, 2012.

[8] M. Kerrisk. Namespaces in operation, part 1: namespaces
overview. http://lwn.net/Articles/531114/, 2013.

[9] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song. Code-pointer integrity. In Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[10] Microsoft Visual Studio 2005. Image has safe exception han-
dlers. http://msdn.microsoft.com/en-us/library/

9a89h429%28v=vs.80%29.aspx.
[11] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.

SoftBound: Highly Compatible and Complete Spatial Memory
Safety for C. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009.

[12] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
CETS: Compiler Enforced Temporal Safety for C. In Interna-
tional Symposium on Memory Management (ISMM), 2010.

[13] J. Newsome and D. Song. Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and Signature Generation of Ex-
ploits on Commodity Software. In Annual Network and Dis-
tributed System Security Symposium, 2005.

[14] B. Niu and G. Tan. Monitor Integrity Protection with Space
Efficiency and Separate Compilation. In ACM Conference on
Computer and Communications Security, 2013.

[15] B. Niu and G. Tan. Modular Control-flow Integrity. In ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2014.

[16] P. Philippaerts, Y. Younan, S. Muylle, F. Piessens, S. Lach-
mund, and T. Walter. Code pointer masking: Hardening ap-
plications against code injection attacks. In Conference on
Detection of Intrusions and Malware and Vulnerability Assess-
ment (DIMVA), 2011.

3

A	simple	example

Step	3:	collect	dependencies

1 static int acl_permission_check
2 (struct inode *inode, int mask)
3 {
4 unsigned int mode = inode->i_mode;
5
6 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
7 mode >>= 6;

8 else if (in_group_p(inode->i_gid))
9 mode >>= 3;

10
11 if ((mask & ~mode &
12 (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)

13 return 0;
14 return -EACCES;
15 }

Example 1: The decision making function of the Linux
DAC subsystem.

3.2 Proposal
To solve the problem, I plan to leverage the power of
program analysis. Specifically, for each access control
mechanism, I want to

1. Build an abstract model based on data and control
dependencies;

2. Manually annotate some seed data;

3. Use program analysis to map concrete program
data structures to the abstractions in the model.

Example 1 shows the decision making process of the
DAC subsystem. In this example, the fsuid and fsgid
are subject IDs; the i_uid and i_gid are object IDs;
and the i_mode is the policy. So one possible abstrac-
tion is: (1) object id has data depend (bind by compare
operation) on subject id; (2) policy has control depend
on subject ID and object ID; and (3) return value has
control depend on mode.

Since the subject ID is relatively easy to annotate, we
can first manually assign fsuid and fsgid as subject IDs.
Then the system to be built will automatically identify
inode->i_uid and inode->i_gid as object IDs; and
inode->i_mode as the policy data.

4 Timeline
1. Infrastructure build. Implement a context-

sensitive field-sensitive inter-procedure data flow
and control flow analysis infrastructure for analyz-
ing the Linux kernel. Mid April.

2. Abstraction design. Design the data flow and con-
trol flow abstraction for detecting sensitive data.
End of April.

3. Evaluation. Evaluate on the Linux kernel. Early
May.

References
[1] Overview of linux kernel security features. http:

//www.linux.com/learn/docs/727873-overview-

of-linux-kernel-security-features/, 2013.
[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-

Flow Integrity. In ACM Conference on Computer and Commu-
nications Security, 2005.

[3] T. Bletsch, X. Jiang, and V. Freeh. Mitigating Code-reuse
Attacks with Control-flow Locking. In Annual Computer
Security Applications Conference (ACSAC), 2011.

[4] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-
control-data attacks are realistic threats. In Usenix Security
Symposium (Security), 2005.

[5] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stackguard: Au-
tomatic adaptive detection and prevention of buffer-overflow
attacks. In Usenix Security Symposium (Security), 1998.

[6] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete
Control-Flow Integrity for Commodity Operating System Ker-
nels. In IEEE Symposium on Security and Privacy (Oakland),
2014.

[7] M. Kerrisk. Lce: The failure of operating systems and how we
can fix it. http://lwn.net/Articles/524952/, 2012.

[8] M. Kerrisk. Namespaces in operation, part 1: namespaces
overview. http://lwn.net/Articles/531114/, 2013.

[9] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song. Code-pointer integrity. In Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[10] Microsoft Visual Studio 2005. Image has safe exception han-
dlers. http://msdn.microsoft.com/en-us/library/

9a89h429%28v=vs.80%29.aspx.
[11] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.

SoftBound: Highly Compatible and Complete Spatial Memory
Safety for C. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009.

[12] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
CETS: Compiler Enforced Temporal Safety for C. In Interna-
tional Symposium on Memory Management (ISMM), 2010.

[13] J. Newsome and D. Song. Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and Signature Generation of Ex-
ploits on Commodity Software. In Annual Network and Dis-
tributed System Security Symposium, 2005.

[14] B. Niu and G. Tan. Monitor Integrity Protection with Space
Efficiency and Separate Compilation. In ACM Conference on
Computer and Communications Security, 2013.

[15] B. Niu and G. Tan. Modular Control-flow Integrity. In ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 2014.

[16] P. Philippaerts, Y. Younan, S. Muylle, F. Piessens, S. Lach-
mund, and T. Walter. Code pointer masking: Hardening ap-
plications against code injection attacks. In Conference on
Detection of Intrusions and Malware and Vulnerability Assess-
ment (DIMVA), 2011.

3

Be	complete

• Collects data- and control-dependencies transitively

• Collects sensitive pointers recursively

Step	2:	protect	integrity	of	the	data

• Data-flow integrity [OSDI’06]
• Runtime data-flow should not deviate from static data-flow

graph (similar to control-flow integrity)

• For example, string should not flow to return address or uid

• How

• Check the last writer at every memory read

• Challenge

• Performance! (104%)

How	to	reduce	performance	overhead

• Observation 1: reads are more frequent than writes
• Check write instead of read

• Observation 2: most writes are not relevant
• Use isolation instead of inlined checks

• Observation 3: most relevant write are safe
• Use static analysis to verify

Write	
Integrity	
Test	
[S&P’08]

Two-layered	protection

• Layer one: data-flow isolation
• Prevents unrelated writes from tampering sensitive data

• Mechanisms: segment (x86-32), access domain (ARM32),
WP flag (x86-64), virtual address space, hardware
virtualization, TrustZone, etc.

• Layer two: WIT
• Prevents related but unrestricted writes from tampering

sensitive data

Additional	building	blocks

• Shadow objects
• Lacks fine-grained isolation mechanisms

• Sensitive data is mixed with non-sensitive data

• Safe stack
• Certain critical data is no visible at language level, e.g., return

address, register spills

• Access pattern of stack is different

• Safety is easier to verify

Prototype

• ARM64 Android
• For its practical importance and long updating cycle
• Enough entropy for stack randomization

• Data-flow isolation
• Heap: virtual address space based, uses ASID to reduce

overhead
• Stack: randomization based

• Shadow objects
• Modified the SLUB allocator

Implementation

• Kernel
• Nexus 9 lollipop-release + LLVMLinux patches

• Our modifications: 1900 LoC

• Static Analysis
• Framework: KINT [OSDI’12]

• Point-to analysis: J. Chen’s field-sens [GitHub]

• Context sensitive from KOP [CCS’09]

• Safe stack: CPI [OSDI’14]

• Our analysis + modifications: 4400 LoC

• Instrumentation: 500 LoC

How	many	sensitive	data	structures

• Control data: 3699 fields (783 structs), 1490 global objects

• Non-control data: 1731 fields (855 structs), 279 global objects
• False positives: 491 fields (221 structs) / 61 fields (25 structs)

163

115

93

50
40 37 40

119

60

42 37
30 31 36

0

20

40

60

80

100

120

140

160

180

net fs drivers kernel security include other

Fields
Structs

How	secure	is	our	approach

• Inference
• Sound à no false negatives
• Catch: no semantic errors

• Data-flow (point-to) analysis
• Sound but not complete à over permissive
• Improve the accuracy with context and field sensitivity

• Against existing attacks
• All prevented

Performance	impact

• Write operations
• 26645 (4.30%) allowed, 2 checked

• Context switch
• 1700 cycles

• Benchmarks
• LMBench (syscalls): 1.42x ~ 3.13x (0% for null syscall)
• Android benchmarks: 7% ~ 15%

Summary

• Target exploit technique
• Data-oriented attacks (for kernel privilege escalation)

• Defense principles
• Access control invariants

• DFI

• Practical criteria
• Performance overhead: moderate

• Adoption difficulty: low

Proposals

• Preventing code injection attacks: SDCG [NDSS’15]

• Preventing data-oriented attacks: Kenali [NDSS’16]

• Improving security and performance: HDFI [SP’16]

Limitations	from	previous	projects

• Data isolation
• Lacks efficient isolation in 64-bit world

• Performance overhead for switching between virtual
address spaces is high

• Lacks of fine-grained isolation

• Shadow objects are awkward

Opportunities

• DFI is a great prevention technique
• Capable of preventing both illegal read and write

• Do not need to track allocation

• Proposing new hardware features is more feasible
• Open sourced hardware: RISC-V

• Chips are cheap and customization is popular

• Even Intel is more willing to adopt more protection features
(SGX, MPX, execute-only page)

Design	goals

• Enabling selective memory safety
• Approach: efficient isolation for critical data

• Practical
• Commercial-ready platform

• Minimized hardware changes

• Low performance overhead

• Flexible
• Capable of support different security model/mechanisms

HDFI	Architecture

• ISA extension
• Three new instructions to enable DFI-style checks: sdset1,
ldchk0, ldchk1

• Cache extension
• Extra bits in the cache line for storing the tag

• Memory Tagger
• Emulating tagged memory without physically extending the

main memory

Optimizations

• Memory Tagger introduces additional performance
overhead (memory accesses)

• Naive implementation: 2x, 1 for data, 1 for tag

• Three optimization techniques
• Tag cache

• Tag valid bits (TVB)

• Meta tag table (MTT)

Security	applications	(1)

• Shadow stack
• Approach: return address should always have tag 1

• Benefits: supports context saving/restoring, deep recursion,
modified return address, kernel stack

• Implementation: We implemented the proposed hardware
with realization on FGPA board. We also implemented all
six security applications (§VI).

• Evaluation: We quantitatively evaluated: (1) the perfor-
mance impact of HDFI and the effectiveness of our op-
timization techniques and (2) the performance improvement
delivered to the security mechanisms we implemented (§VII).
The rest of this paper is organized as follows. §II defines

the threat model and the problem scope. §III uses a concrete
example to explain how HDFI works, and discusses the differ-
ences between HDFI and similar work. §IV presents the the
design of HDFI. §V describes the security applications we have
developed. §VI provides some implementation details. §VII
describes the evaluation of HDFI and its security applications.
§VIII analyzes the security guarantee provided by HDFI, its
attack surface, and discusses best practices. §IX discusses the
limitations of our current design and future work. §X concludes
the paper.

II. THREAT MODEL AND ASSUMPTIONS

In this work, we focus on preventing memory corruption
based attacks; therefore we follow the typical threat model
of most related work. That is, we assume that software may
contain one or more memory vulnerabilities that, once triggered
would allow attackers to perform arbitrary memory reads and
writes. We do not limit what attackers would do with this
capability, as there are many different attack vectors given
this capability. As a hardware-based solution, we also do not
limit where the vulnerabilities are: they can be in user-mode
applications, OS kernel, hypervisor, etc. However, we assume
all hardware components are trusted and bug free, so attacks
that exploit hardware vulnerabilities, such as the row hammer
attack [42], are out-of-scope.

Similar to NX-bit, HDFI requires software modifications
to obtain its benefits. This can be done in many ways:
manual modification, compiler-based modification, static binary
rewriting, dynamic binary rewriting, etc. For the example
applications we demonstrated in this paper, we either manually
modified the source or leveraged compiler-based approaches.
However, we must emphasize that this is not a limitation of
HDFI and source code is not always necessary.

III. BACKGROUND AND RELATED WORK

This section provides the background of HDFI and compares
HDFI with related work.

A. Data-flow Integrity
The goal of HDFI is to prevent attackers from exploiting

memory corruption vulnerabilities to tamper/leak sensitive data.
To achieve this goal, we leverage data-flow integrity (DFI) [10].
DFI ensures that the runtime data-flow cannot deviate from the
data-flow graph generated from static analysis. In particular,
DFI assigns an identifier to each write instruction and records
the ID of the last instruction that writes to a memory position;
then at each read instruction, DFI checks whether the ID of
the last writer belongs to the set allowed by static analysis.

Take Example 1. This code snippet contains a buffer overflow
vulnerability at line 6, which allows attackers to use strcpy()
to overwrite the return address saved at line 3 and launch
control-flow hijacking attacks. Such attacks can be prevented
by checking if the return address read at line 8 is defined by
the store instruction at line 3.
1 main:
2 add sp,sp,-32
3 ?sdset1 ra,24(sp)
4 ld a1,8(a1) ; argv[1]

5 mv a0,sp ; char buff[16]

6 call strcpy ; strcpy(buff, argv[1])

7 li a0,0
8 ?ldchk1 ra,24(sp)
9 add sp,sp,32

10 jr ra ; return

Example 1: A typical stack buffer overflow example, in RISC-V
assembly, in which HDFI prevented by replacing load and store
instructions with two new load and store instructions (line 3 and
8). strcpy() at line 6 can overflow the return address saved at line 3,
and HDFI can accordingly detect the overflow when it is loaded back
at line 8.

In HDFI, we extend the ISA to perform DFI-style checks
with hardware. Specifically, we leverage memory tagging to
record the last writer of a memory word and provide new
instructions to set and check the tag. However, instead of
trying to fully replicate DFI, which would require supporting
arbitrary tag size, we focus on providing isolation, i.e., using a
one-bit tag to indicate the trustworthiness of the writer. Using
the same example, HDFI can be utilized to prevent the attack
by (1) using a new instruction sdset1 (store and set tag) to
set the tag of memory used to store return address to 1 (line
3); and (2) when loading the return address from memory for
function return, using another instruction ldchk1 (load and
check tag) to check if the memory tag is still 1. Since normal
store instructions (e.g., sd) would set the tag to 0, if attackers
try to overwrite the return address, the ldchk1 instruction would
fail and generate a memory exception.

B. Tag-based Memory Protection

Tag-based memory protection is not new and has been
explored in many previous works. For example, lowRISC [8]
uses a 2-bit tag to specify if a memory address is readable and
writable. Loki [84] also allows developers to specify permission
with a memory address, but is more flexible, as the permission is
related to the current protection domain. The problem with these
approaches (including the Mondriaan protection model [79]) is
that, although the objects (memory addresses) are fine-grained,
the subjects are still coarse-grained—the access permissions are
applied to the whole program or the whole protection domain.
However, the subjects are individual instructions in HDFI.

An alternative approach is to associate the access permission
with pointers instead of memory locations. For example,
Watchdog [51] and the application data integrity (ADI) [57]
mechanism on SPARC M7 processors allow a program to
associate memory addresses and pointers with versions (tags)
and require that when accessing the memory the version of
the pointer must match the version of the memory. The tricky

3

Security	application	(2)

• Standard library enhancement
• Heap metadata protection

• setjmp/longjmp

• GOT protection

• Exit handler protection

Security	application	(3)

• VTable pointer (vfptr) protection
• Approach: vfptr should always have tag 1

• Only allow constructors to set tag 1

• Check tagging at every virtual function call

Security	applications	(4)

• Code pointer separation (CPS)
• Isolation code pointers from malicious access (from CPI)

• Our implementation: code pointers should always have tag 1

• Use sdset1 to store code pointers

• Use ldchk1 to load code pointers

Security	application	(5)

• Kernel protection - Kenali
• Approach: critical data should always have tag 1

• Allow writing instructions that can write to sensitive data
to set tag to 1

• Load sensitive data with ldchk1

Security	applications	(6)

• Information leak prevention
• Approach: mark sensitive data with tag 1

• Use ldchk0 to construct/scan output buffer

• A demonstration: Heartbleed attack

• Store crypto keys with sdset1

• Use ldchk0 to sanitize buffer to be written to the network

Implementations

• Hardware
• RISCV RocketCore: 2198 LoC

• Software
• Assembler gas: 16 LoC

• Linux kernel: 60 LoC

Effectiveness	of	optimizations

• Memory bandwidth and latency

• SPEC CINT2000

Benchmark Baseline Tagger TVB MTT TVB+MTT

L1 hit 40ns 40ns (0%) 40ns (0%) 40ns (0%) 40ns (0%)
L1 miss 760ns 870ns (14.47%) 800ns (5.26%) 870ns (14.47%) 800ns (5.26%)

Copy 1081MB/s 939MB/s (13.14%) 1033MB/s (4.44%) 953MB/s (11.84%) 1035MB/s (4.26%)
Scale 857MB/s 766MB/s (10.62%) 816MB/s (4.79%) 776MB/s (9.45%) 817MB/s (4.67%)
Add 1671MB/s 1598MB/s (4.37%) 1650MB/s (1.26%) 1602MB/s (4.13%) 1651MB/s (1.2%)
Triad 818MB/s 739MB/s (9.66%) 802MB/s (1.96%) 764MB/s (8.8%) 803MB/s (1.83%)

TABLE IV: Impact on memory bandwidth and read latency, with different optimization techniques. The load does not include tag check and
store does not include tag set.

Benchmark Baseline Tagger TVB MTT TVB+MTT

164.gzip 963s 1118s (16.09%) 984s (2.18%) 1029s (6.85%) 981s (1.87%)
175.vpr 14404s 18649s (29.51%) 14869s (3.26%) 15513s (7.71%) 14610s (1.43%)
181.mcf 8397s 11495s (36.89%) 8656s (3.08%) 9544s (13.66%) 8388s (�0.11%)
197.parser 21537s 25005s (16.11%) 22025s (2.27%) 23177s (7.61%) 21866s (1.53%)
254.gap 4224s 4739s (12.19%) 4268s (1.04%) 4500s (6.53%) 4254s (0.71%)
256.bzip2 716s 820s (14.52%) 735s (2.65%) 742s (3.63%) 722s (0.84%)
300.twolf 22240s 28177s (26.71%) 22896s (2.97%) 23883s (7.37%) 22323s (0.36%)

TABLE V: Performance overhead of a subset of SPEC CINT 2000 benchmarks. Due to the limited computing power of the Rocket Chip on
FPGA, we chose relatively lighter benchmark. In addition, to be fair, we included relatively memory bound benchmarks. According to a
paper [37], 181.mcf, 175.vpr and 300.twolf are memory bound and showing higher overhead. We used reduced version of reference input to
run 164.gzip and 256.bzip2.

memory bandwidth, our results also show that the optimizations
we implemented can effectively reduce overhead.

SPEC CINT 2000. In addition to the micro benchmarks,
we also ran a subset of SPEC CINT 2000 benchmarks
on the five configurations of HDFI, without any security
applications (i.e., no load check and no sdset1). Table V
shows that even though the unoptimized version of HDFI
causes non-negligible performance overhead, our optimizations
successfully eliminated a large portion of overhead. Specifically,
since there is no load check, TVB eliminated all read access
requests to the tag table; and since there is no sdset1, MTT
eliminated all the write access to the tag table. Table VI shows
the number of memory accesses reduced by TVB and MTT.
Please note that the 0.11% performance gain on mcf is due to
fluctuations.

C. Security Experiments

In this subsection, we evaluate the effectiveness of HDFI-
powered protection mechanisms. We evaluated all the security
applications described in §V, with synthesized attacks described
in §VI-D. The evaluation result is shown in Table VII, all HDFI-
powered protection mechanisms can successfully mitigate the
corresponding attack(s).

RIPE benchmark. With our ported RIPE benchmark, there
are 112 possible combinations, with 54 that could proceed and
58 are not possible. Please note that although we did not port
all combinations, all attack targets are supported except the
frame pointer, which behaves quite differently on RISC-V. The
supported targets are: return address, stack function pointer,
heap function pointer, .bss section function pointer, .data
section function pointer, jmp_buf on stack, jmp_buf as stack
parameter, jmp_buf in heap, jmp_buf in .bss section, jmp_buf
in .data section, function pointer in a structure on stack, in

heap, in .bss section and in .data section. With our ported
CPS, we can prevent all 54 attacks.
Heap exploit. Without protection, our basic version of heap
attack targeting newlibc (a lightweight libc) was able to
overwrite the return address to launch a return-to-libc attack
to invoke the “evil” function. With our enhanced library, we
were able to stop the attack.
VTable hijacking. Without protection, our simple VTable
hijacking attack was able to invoke the “evil” function. With
our VTable protection mechanism, we were able to prevent
the loading of attacker-crafted vfptr.
Format string exploit. Without protection, our format string
exploit can overwrite the GOT table entry and the exit handler
to invoke the “evil” function. With our enhanced library, both
attacks were stopped.
Kernel exploit. Without protection, the exploit can change
the uid of the attack process to a arbitrary number. With our
protection, the attack causes a kernel panic when trying to
access the uid.
Heartbleed. : without protection, we can leak the decoy secret
by exploiting the Heartbleed vulnerability. With our protection,
the attack was stopped when constructing the response buffer.

D. Impact on Existing Security Solutions
As a fine-grained hardware-based isolation mechanism, we

expect HDFI to provide the following benefits:
I Security: HDFI should provide non-bypassable protection

for the isolated data;
II Efficiency: HDFI should provide the protection with low

performance overhead;
III Elegance: HDFI should enable the building of elegant secu-

rity solutions, e.g., no data shadowing, which as discussed
in the introduction, has many drawbacks;

12

Benchmark Baseline Tagger TVB MTT TVB+MTT

L1 hit 40ns 40ns (0%) 40ns (0%) 40ns (0%) 40ns (0%)
L1 miss 760ns 870ns (14.47%) 800ns (5.26%) 870ns (14.47%) 800ns (5.26%)

Copy 1081MB/s 939MB/s (13.14%) 1033MB/s (4.44%) 953MB/s (11.84%) 1035MB/s (4.26%)
Scale 857MB/s 766MB/s (10.62%) 816MB/s (4.79%) 776MB/s (9.45%) 817MB/s (4.67%)
Add 1671MB/s 1598MB/s (4.37%) 1650MB/s (1.26%) 1602MB/s (4.13%) 1651MB/s (1.2%)
Triad 818MB/s 739MB/s (9.66%) 802MB/s (1.96%) 764MB/s (8.8%) 803MB/s (1.83%)

TABLE IV: Impact on memory bandwidth and read latency, with different optimization techniques. The load does not include tag check and
store does not include tag set.

Benchmark Baseline Tagger TVB MTT TVB+MTT

164.gzip 963s 1118s (16.09%) 984s (2.18%) 1029s (6.85%) 981s (1.87%)
175.vpr 14404s 18649s (29.51%) 14869s (3.26%) 15513s (7.71%) 14610s (1.43%)
181.mcf 8397s 11495s (36.89%) 8656s (3.08%) 9544s (13.66%) 8388s (�0.11%)
197.parser 21537s 25005s (16.11%) 22025s (2.27%) 23177s (7.61%) 21866s (1.53%)
254.gap 4224s 4739s (12.19%) 4268s (1.04%) 4500s (6.53%) 4254s (0.71%)
256.bzip2 716s 820s (14.52%) 735s (2.65%) 742s (3.63%) 722s (0.84%)
300.twolf 22240s 28177s (26.71%) 22896s (2.97%) 23883s (7.37%) 22323s (0.36%)

TABLE V: Performance overhead of a subset of SPEC CINT 2000 benchmarks. Due to the limited computing power of the Rocket Chip on
FPGA, we chose relatively lighter benchmark. In addition, to be fair, we included relatively memory bound benchmarks. According to a
paper [37], 181.mcf, 175.vpr and 300.twolf are memory bound and showing higher overhead. We used reduced version of reference input to
run 164.gzip and 256.bzip2.

memory bandwidth, our results also show that the optimizations
we implemented can effectively reduce overhead.

SPEC CINT 2000. In addition to the micro benchmarks,
we also ran a subset of SPEC CINT 2000 benchmarks
on the five configurations of HDFI, without any security
applications (i.e., no load check and no sdset1). Table V
shows that even though the unoptimized version of HDFI
causes non-negligible performance overhead, our optimizations
successfully eliminated a large portion of overhead. Specifically,
since there is no load check, TVB eliminated all read access
requests to the tag table; and since there is no sdset1, MTT
eliminated all the write access to the tag table. Table VI shows
the number of memory accesses reduced by TVB and MTT.
Please note that the 0.11% performance gain on mcf is due to
fluctuations.

C. Security Experiments

In this subsection, we evaluate the effectiveness of HDFI-
powered protection mechanisms. We evaluated all the security
applications described in §V, with synthesized attacks described
in §VI-D. The evaluation result is shown in Table VII, all HDFI-
powered protection mechanisms can successfully mitigate the
corresponding attack(s).

RIPE benchmark. With our ported RIPE benchmark, there
are 112 possible combinations, with 54 that could proceed and
58 are not possible. Please note that although we did not port
all combinations, all attack targets are supported except the
frame pointer, which behaves quite differently on RISC-V. The
supported targets are: return address, stack function pointer,
heap function pointer, .bss section function pointer, .data
section function pointer, jmp_buf on stack, jmp_buf as stack
parameter, jmp_buf in heap, jmp_buf in .bss section, jmp_buf
in .data section, function pointer in a structure on stack, in

heap, in .bss section and in .data section. With our ported
CPS, we can prevent all 54 attacks.
Heap exploit. Without protection, our basic version of heap
attack targeting newlibc (a lightweight libc) was able to
overwrite the return address to launch a return-to-libc attack
to invoke the “evil” function. With our enhanced library, we
were able to stop the attack.
VTable hijacking. Without protection, our simple VTable
hijacking attack was able to invoke the “evil” function. With
our VTable protection mechanism, we were able to prevent
the loading of attacker-crafted vfptr.
Format string exploit. Without protection, our format string
exploit can overwrite the GOT table entry and the exit handler
to invoke the “evil” function. With our enhanced library, both
attacks were stopped.
Kernel exploit. Without protection, the exploit can change
the uid of the attack process to a arbitrary number. With our
protection, the attack causes a kernel panic when trying to
access the uid.
Heartbleed. : without protection, we can leak the decoy secret
by exploiting the Heartbleed vulnerability. With our protection,
the attack was stopped when constructing the response buffer.

D. Impact on Existing Security Solutions
As a fine-grained hardware-based isolation mechanism, we

expect HDFI to provide the following benefits:
I Security: HDFI should provide non-bypassable protection

for the isolated data;
II Efficiency: HDFI should provide the protection with low

performance overhead;
III Elegance: HDFI should enable the building of elegant secu-

rity solutions, e.g., no data shadowing, which as discussed
in the introduction, has many drawbacks;

12

Security	experiments

• With synthesized attacks

Benchmark Type Baseline Tagger TVB MTT TVB+MTT

164.gzip Read 590M 799M (35.25%) 606M (2.71%) 589M (�0.17%) 588M (�0.34%)
Write 380M 1,217M (220.26%) 453M (19.21%) 1,017M (167.63%) 378M (�0.53%)

175.vpr Read 9,816M 17,200M (75.15%) 10,930M (11.35%) 9,760M (�0.57%) 9,792M (�0.25%)
Write 7,908M 37,480M (373.83%) 12,420M (57.06%) 31,890M (303.16%) 7905M (0%)

181.mcf Read 9,778M 14,310M (46.35%) 10,503M (7.41%) 9,778M (0%) 9,778M (0%)
Write 5,588M 23,720M (324.33%) 8,490M (1.11%) 20,300M (263.15%) 5,588M (0%)

197.parser Read 12,770M 17,610M (37.9%) 13,220M (3.52%) 12,850M (0.63%) 12777M (0.01%)
Write 8,290M 27,490M (231.6%) 9,640M (16.28%) 24,440M (194.81%) 8299M (0.11%)

254.gap Read 2,233M 2,872M (28.61%) 2,239M (0.27%) 2,225M (0%) 2,206M (�1.21%)
Write 1,594M 4,237M (165.81%) 1,701M (6.71%) 3,926M (146.3%) 1,592M (�0.13%)

256.bzip2 Read 228M 390M (71.05%) 268M (17.54%) 229M (0.44%) 229M (0.44%)
Write 249M 896M (259.84%) 407M (63.45%) 730M (193.17%) 249M (0%)

300.twolf Read 13,600M 22,350M (64.34%) 15,820M (16.32%) 13,600M (0%) 13,610M (0%)
Write 13,680M 48,650M (255.63%) 22,510M (64.55%) 38,090M (178.43%) 13,610M (�0.51%)

TABLE VI: The number of total memory read/write access from both the processor and DFITAGGER.

Mechanism Attacks Result

Shadow stack RIPE X
Heap metadata protection Heap exploit X
VTable protection VTable hijacking X
Code pointer separation (CPS) RIPE X
Code pointer separation (CPS) Format string exploit X
Kernel protection Privilege escalation X
Private key leak prevention Heartbleed X

TABLE VII: Security applications utilizing HDFI can effectively
prevent various attacks including Heartbleed (CVE-2014-0160).

IV Usability: HDFI should be flexible, capable of supporting
different security solutions; it should also be easy to use, so
as to increase the chance of real-world adoption.
In this subsection, we evaluate whether HDFI achieves these

design goals or not. As described in §V, none of the HDFI-
powered security applications requires data shadowing, includ-
ing three solutions (stack protection, CPS and Kenali) whose
previous implementations rely heavily on data shadowing. For
this reason, we consider HDFI to have achieved goal III. And
as shown in Table III, implementing/porting security solutions
with HDFI is very easy, so we consider goal IV to be achieved
as well. Next, we analyze the security and efficiency benefit.

1) Security Improvement: Compare with software-based
shadow stacks [21], our stack protection provides better security
than platforms that do not have efficient isolation mechanisms,
such as x86_64 and ARM64. Compared with existing hardware-
based shadow stacks [46, 59, 81], our solution provides the
same security guarantee but is more flexible and supports kernel
stack. Compared to active callsite based solutions [23, 24], our
stack protection provide better security. For standard libraries,
existing heap metadata integrity checks can be bypassed under
certain conditions. For example, Google project zero team
has successfully compromised ptmalloc with NULL off-by-
one [31]; and existing encryption-based exit handler protection
is vulnerable to information leak based attacks. However, Our
HDFI-based library enhancement cannot be bypassed because
attackers cannot control the hardware-managed tags. Compared
with existing VTable protection mechanisms [7, 38, 71, 85, 86],
our HDFI-based solution has both advantages and limitations.
On the positive side, our approach makes it much harder to
overwrite the vfptr; while in all other solutions, attackers can

easily tamper with vfptr. However, because our approach does
not involve any class hierarchy analysis, we cannot guarantee
type safety (i.e., semantic correctness). Compared to the original
CPS implementation, our ported version provides the same
security guarantee as segment-based isolation but is stronger
than its randomization-based isolation, which has been proven
to be vulnerable [32]. Compared to the original implementation
of Kenali [66], our ported version provides stronger guarantees
than its randomization-based stack. Based on the above analysis,
we also consider HDFI to achieve goal I.

2) Performance Improvement: Because we can neither fully
port the original implementation of CPS and Kenali to our
testbed due to problems with the official llvm-riscv toolchain
nor run the C++ benchmarks of SPEC CINT 2000, we
designed the following benchmarks to evaluate the performance
improvement of HDFI-based security solutions.

Micro benchmarks. Compared with the original implementa-
tion of CPS, our ported version would be more efficient because
it does not need to access the shadow data. To demonstrate this
benefit, we implemented a micro benchmark that measures the
overhead for performing an indirect call for 1,000 times. To
simulate CPS, we used their own hash table implementation
and performed the same look up before the indirect call. For
our implementation, we just replaced the load instruction with
a checked load. Note, although our implementation sounds
simpler, it provides the same level of security guarantee as
the original segment-based CPS implementation. The result
showed that our protection only incurs 1.6% overhead, whereas
the hash table lookup incurred 971.8% overhead. Note, this
micro benchmark only shows the worst case performance of
both approaches. Depending on the running application, the
real end-user performance impacts could be much less than
this.

Because we cannot perform automated instrumentation to
fully replicate Kenali, here we only measured the performance
overhead of kernel stack protection. The result is shown
in Table VIII. Although our prototype implementation has
higher a performance overhead, it is also more secure than
the randomization-based stack protection used in the original
implementation.

13

Impacts	on	security	solutions	(1)

• Security guarantee
• Stronger than randomization-based isolation (shadow stack,

CPS)

• Stronger than ad-hoc encryption-based (ptmalloc,
setjmp/longjmp)

• Stronger than simple integrity-check-based protection (vfptr)

Impacts	on	security	solutions	(2)

• Efficiency
• Faster than masking and shadow address space based

• Average RPC latency in SDCG is 8-9 𝜇s

• Context-switch costs 1700 cycles in Kenali

• Faster than shadow object based

• Hash table lookup in CPS is 97.1x slower than single memory operation

• HDFI is 1.6% slower

Impacts	on	security	solutions	(3)

• Efficiency
• Benchmarks

Benchmark Baseline Kernel Stack Protection

null syscall 8.91µs 8.934µs (0.27%)
open/close 160.6µs 168.7µs (5.04%)
select 285.6µs 287.5µs (0.67%)
signal install 19.3µs 21.5µs (11.4%)
signal catch 99.8µs 105.6µs (5.81%)
pipe 273.6µs 306.6µs (12.06%)
fork+exit 5892µs 6308µs (7.06%)
fork+execv 6510µs 6972µs (7.1%)
page fault 50.0µs 52.6µs (5.2%)
mmap 800µs 880µs (10%)

TABLE VIII: LMBench results of baseline system and HDFI with
kernel stack protection.

Benchmark GCC Shadow Stack Clang1 CPS+SS1

164.gzip 981s 992s (1.12%) 1734s 1776s (2.42%)
181.mcf 8388s 8536s (1.76%) 11014s 11403s (3.54%)
254.gap 4254s 4396s (3.34%) 20783s 23526s (13.23%)
256.bzip2 722s 744s (3.05%) 1454s 1521s (4.61%)

TABLE IX: Performance overhead of HDFI-based shadow stack CPS.
1Please note that because Clang cannot compile the benchmark with
-O2, they were compiled with -O0.

SPEC CINT 2000. To measure the performance overhead of
HDFI under the existence of load check and store set, we ran
four benchmarks from SPEC CINT 2000 with two security
protections: GCC-based shadow stack and CPS plus LLVM-
based shadow stack. The result is shown in Table IX. As we
can see, the performance overhead is also low. Please note that
because Clang cannot compile the benchmarks with -O2, they
are compiled with -O0. As a result, the performance is much
worse than GCC. More importantly, because Clang did not
optimize redundant stack access with -O0, it caused trouble
for our current implementation of TVB (§VI-A); this is the
reason why the gap benchmark behaved so badly on CPS.

VIII. SECURITY ANALYSIS

Being an isolation mechanism, HDFI cannot guarantee
memory safety by itself, so it cannot prevent all memory
corruption-based attacks. In this section, we analyze the security
guarantee provided by HDFI and provide our recommendations
on how to utilize HDFI properly in security solutions.

A. Attack Surface
The security guarantee of HDFI is in data-flow isolation, i.e.,

preventing data flowing from one region to another. This is
enforced by (1) partitioning write operations into two groups:
those who can set the memory tag to 1, and those who set
the memory tag to 0; and (2) when loading, checking if the
tag matches the expected value. In this regard, HDFI has the
following attack surfaces:

1) Inaccuracy of Data-flow Analysis: The first challenge
for utilizing HDFI is how to correctly perform partitioning
and checking. To do so, we rely on data-flow analysis. For
some security-critical data, such as return addresses and VTable
pointers, their data-flow is quite simple, so the accuracy can be
easily guaranteed even without any program analysis. For data
like code pointers, because their data-flow is more complicated,
it would require thorough static analysis to guarantee the

accuracy. Fortunately, because these data are usually self-
contained, i.e., not provided by external input, the accuracy,
to some extent, can still be guaranteed. However, for data
that exhibits complicated data-flow, it may not always be
possible to guarantee the accuracy of static analysis. In this case,
the common strategy is to avoid false positives by allowing
false negatives, i.e., allowing some attacker controllable write
operations to set the memory tags. As a result, HDFI itself is
not sufficient to guarantee data integrity, so one must employ
other runtime protection techniques to compensate for such
inaccuracies.

2) Deputy Attacks: After partitioning, the next challenge is
how to guarantee the trustworthiness of each write operation.
More specifically, a write operation takes two parameters, a
value and an address. The integrity of a write operation thus
relies on the integrity of both the value and the address. If either
of them can be controlled by attackers or the instruction gets
executed under wrong context (e.g., via control flow hijacking),
then they can launch deputy attacks. Please note that the control
here means both direct and indirect control. For example, if
attackers can control the object pointer used to invoke a C++
constructor, then even though our VTable pointer protection
can prevent them from directly overwriting the VTable pointer,
they can still leverage this constructor to overwrite the VTable
pointer of an existing C++ object. Similarly, if a piece of
sensitive data may propagate from one memory location to
another, and one forgets to check the tag of the source before
setting the tag of the destination to 1, then an attack can leverage
this bug to overwrite sensitive data with a value controlled by
the attacker.

B. Best Practices
To mitigate the aforementioned attacks, we recommend

utilizing HDFI in the following ways:
1) To prevent write operations from executing under the

wrong context, it is important to enforce the integrity of the
control flow, which is also required by other systems that
enforces write capability [2, 10]. With HDFI, this can be easily
achieved through protecting all the control data (e.g., CPS +
shadow stack).

2) To prevent attackers from controlling the address parame-
ter of write operations, it is important to recursively protect all
pointers that are part of the dereference chain [43, 66]. It is
worth noting that because HDFI is designed to be fine-grained
and its protection is enforced efficiently by hardware, including
more pointers would not be a big performance issue.

3) To prevent attackers from controlling the value parameter
of write operations, one must ensure that the value is trusted.
A value is trusted if any of these conditions hold: (1) it is
a constant; (2) it is from a trusted register (e.g., the link
register); (3) it is loaded from a memory location with the
expected tag; or (4) the semantic of the current program context
guarantees the trustworthiness of the value (e.g., during early
kernel initialization or when the program is being initialized
by the dynamic loader). Moreover, if the value may have both
tags (e.g., unions in C), one should use the special memory

14

Benchmark Baseline Kernel Stack Protection

null syscall 8.91µs 8.934µs (0.27%)
open/close 160.6µs 168.7µs (5.04%)
select 285.6µs 287.5µs (0.67%)
signal install 19.3µs 21.5µs (11.4%)
signal catch 99.8µs 105.6µs (5.81%)
pipe 273.6µs 306.6µs (12.06%)
fork+exit 5892µs 6308µs (7.06%)
fork+execv 6510µs 6972µs (7.1%)
page fault 50.0µs 52.6µs (5.2%)
mmap 800µs 880µs (10%)

TABLE VIII: LMBench results of baseline system and HDFI with
kernel stack protection.

Benchmark GCC Shadow Stack Clang1 CPS+SS1

164.gzip 981s 992s (1.12%) 1734s 1776s (2.42%)
181.mcf 8388s 8536s (1.76%) 11014s 11403s (3.54%)
254.gap 4254s 4396s (3.34%) 20783s 23526s (13.23%)
256.bzip2 722s 744s (3.05%) 1454s 1521s (4.61%)

TABLE IX: Performance overhead of HDFI-based shadow stack CPS.
1Please note that because Clang cannot compile the benchmark with
-O2, they were compiled with -O0.

SPEC CINT 2000. To measure the performance overhead of
HDFI under the existence of load check and store set, we ran
four benchmarks from SPEC CINT 2000 with two security
protections: GCC-based shadow stack and CPS plus LLVM-
based shadow stack. The result is shown in Table IX. As we
can see, the performance overhead is also low. Please note that
because Clang cannot compile the benchmarks with -O2, they
are compiled with -O0. As a result, the performance is much
worse than GCC. More importantly, because Clang did not
optimize redundant stack access with -O0, it caused trouble
for our current implementation of TVB (§VI-A); this is the
reason why the gap benchmark behaved so badly on CPS.

VIII. SECURITY ANALYSIS

Being an isolation mechanism, HDFI cannot guarantee
memory safety by itself, so it cannot prevent all memory
corruption-based attacks. In this section, we analyze the security
guarantee provided by HDFI and provide our recommendations
on how to utilize HDFI properly in security solutions.

A. Attack Surface
The security guarantee of HDFI is in data-flow isolation, i.e.,

preventing data flowing from one region to another. This is
enforced by (1) partitioning write operations into two groups:
those who can set the memory tag to 1, and those who set
the memory tag to 0; and (2) when loading, checking if the
tag matches the expected value. In this regard, HDFI has the
following attack surfaces:

1) Inaccuracy of Data-flow Analysis: The first challenge
for utilizing HDFI is how to correctly perform partitioning
and checking. To do so, we rely on data-flow analysis. For
some security-critical data, such as return addresses and VTable
pointers, their data-flow is quite simple, so the accuracy can be
easily guaranteed even without any program analysis. For data
like code pointers, because their data-flow is more complicated,
it would require thorough static analysis to guarantee the

accuracy. Fortunately, because these data are usually self-
contained, i.e., not provided by external input, the accuracy,
to some extent, can still be guaranteed. However, for data
that exhibits complicated data-flow, it may not always be
possible to guarantee the accuracy of static analysis. In this case,
the common strategy is to avoid false positives by allowing
false negatives, i.e., allowing some attacker controllable write
operations to set the memory tags. As a result, HDFI itself is
not sufficient to guarantee data integrity, so one must employ
other runtime protection techniques to compensate for such
inaccuracies.

2) Deputy Attacks: After partitioning, the next challenge is
how to guarantee the trustworthiness of each write operation.
More specifically, a write operation takes two parameters, a
value and an address. The integrity of a write operation thus
relies on the integrity of both the value and the address. If either
of them can be controlled by attackers or the instruction gets
executed under wrong context (e.g., via control flow hijacking),
then they can launch deputy attacks. Please note that the control
here means both direct and indirect control. For example, if
attackers can control the object pointer used to invoke a C++
constructor, then even though our VTable pointer protection
can prevent them from directly overwriting the VTable pointer,
they can still leverage this constructor to overwrite the VTable
pointer of an existing C++ object. Similarly, if a piece of
sensitive data may propagate from one memory location to
another, and one forgets to check the tag of the source before
setting the tag of the destination to 1, then an attack can leverage
this bug to overwrite sensitive data with a value controlled by
the attacker.

B. Best Practices
To mitigate the aforementioned attacks, we recommend

utilizing HDFI in the following ways:
1) To prevent write operations from executing under the

wrong context, it is important to enforce the integrity of the
control flow, which is also required by other systems that
enforces write capability [2, 10]. With HDFI, this can be easily
achieved through protecting all the control data (e.g., CPS +
shadow stack).

2) To prevent attackers from controlling the address parame-
ter of write operations, it is important to recursively protect all
pointers that are part of the dereference chain [43, 66]. It is
worth noting that because HDFI is designed to be fine-grained
and its protection is enforced efficiently by hardware, including
more pointers would not be a big performance issue.

3) To prevent attackers from controlling the value parameter
of write operations, one must ensure that the value is trusted.
A value is trusted if any of these conditions hold: (1) it is
a constant; (2) it is from a trusted register (e.g., the link
register); (3) it is loaded from a memory location with the
expected tag; or (4) the semantic of the current program context
guarantees the trustworthiness of the value (e.g., during early
kernel initialization or when the program is being initialized
by the dynamic loader). Moreover, if the value may have both
tags (e.g., unions in C), one should use the special memory

14

Impacts	on	security	solutions	(4)

• Simplicity of implemented solutions

• Difficulty of use
• Source code modification (C library enhancement)

• Compiler-based (shadow stack, CPS, vptr, Kenali)

• Binary rewriting

Solutions Language LoC

Shadow Stack C++ (LLVM 3.3) 4
VTable Protection C++ (LLVM 3.3) 40
CPS C++ (LLVM 3.3) 41
Kernel Protection C (Linux 3.14.41) 70
Library Protection C (glibc 2.22) 10
Heartbleed Prevention C (OpenSSL 1.0.1a) 2

TABLE III: Required efforts in implementing or porting security
schemes in terms of lines of code. Given a software-based solution,
HDFI is easy to adopt or extend in practice.

2) VTable Pointer Protection: VTable pointer protection
is implemented in two steps. First, during compilation, we
enable the TBAA (type-based alias analysis) option so Clang
will annotate VTable load/store operations with corresponding
TBAA metadata (“vtable pointer”). This metadata will be
propagated to machine instruction, so in the second step, we
leveraged the DAG to DAG transformation pass to replace
sd instructions with sdset1 instructions, and to replace ld
instructions with ldchk1 instructions, if the machine instruction
has the corresponding TBAA of VTables.

3) Code Pointer Separation: To port CPS [44] to our
architecture, we performed the following modifications. (1)
Because code pointers are now protected by HDFI, we removed
the runtime library required by its original implementation. (2)
We modified the instrumentation, so when a code pointer is
stored to or loaded from memory, we annotate the correspond-
ing operations with a special TBAA metadata and removes
the original invocation to the runtime library. (3) Using the
same DAG to DAG transforming function, we replace the
sd and ld instructions with sdset1 and ldchk1, respectively.
Unfortunately, lacking link time optimization support in the
llvm-riscv toolchain, we cannot port the original CPS and CPI
implementations.

4) Kernel Protection: Due to the limitation of llvm-riscv
toolchain, even though we were able to generate LLVM
bitcode for the target kernel and apply the static analysis
of Kenali [66], we cannot use Clang to compile the kernel
into executable binary. As a result, we cannot perform
automated instrumentation to protect all the discover data. For
proof-of-concept, we utilize the analysis results to manually
instrumented the kernel to protect the uid fields in the cred
structure, which are the most popular target for kernel exploits.
Since we have implemented the shadow stack in GCC, we
were able to replace Kenali’s randomization-based stack
protection with our stack shadow.

The rest of the protection mechanisms are implemented
through manual modification.

5) Standard libraries: To protect the integrity of saved
context of setjmp/longjmp, we modified setjmp.S and
__longjmp.S so general registers are saved with sdset1, and
restored with ldchk1 to enforce its integrity. To protect
the integrity of heap metadata, we manually modified the
linking and unlinking routine to use sdset1 for assigning
pointers and ldchk1 for loading pointers. To set the tag of
static code pointers to 1, we modified the dynamic loader

(elf_machine_rela) so that during the relation process, it
stores the patched code pointer with tag 1. And to protect
code pointers in GOT table and the exit handler, we modified
the dynamic loader to use sdset1 to set these pointers, and
ldchk1 to load these pointers.

6) Heartbleed: To protect sensitive data from Heartbleed
attacks, we modified OpenSSL so that (1) the private key
is stored with sdset1; and (2) when building the response
buffer, ldchk0 is used to make sure that all content copied to
this buffer has tag 0. To implement this protection, we used
background knowledge about Heartbleed to decide where to
put the checking routine (i.e., when constructing the response
buffer). For a prototype implementation, we believe this is
a reasonable limitation. To thoroughly protect the sensitive
data, one could use data flow analysis or taint analysis [82]
to determine where to tag sensitive data, and where to put the
check.

D. Synthesized Attacks
To evaluate the effectiveness of the security applications we

implemented/ported, we developed/ported several synthesized
attacks against different targets.

1) RIPE Benchmark: RIPE [78] is an open sourced intrusion
prevention benchmark. It provides five testbed dimensions:
location of the buffer overflow, target code pointers, overflow
technique, attack payload and abused function. Since RIPE
was developed for the x86 platform, we need to modify it
to make it work on the RISC-V architecture. However, due
to time limitations, we could not port all the features of
RIPE. Specifically, our ported RIPE benchmarks support all
locations of buffer overflow, all target code pointers except the
frame pointer, both overflow techniques (direct and indirect),
one attack payload (return-to-libc), and one abused function
(memcpy).

2) Heap Exploit: To evaluate heap metadata protection, we
ported the example exploit from [39] to overwrite the return
address of a function.

3) VTable Hijacking: Due to the limitations of the FPGA,
we could not use real-world cases like browser attacks to
evaluate our VTable pointer protection mechanism. Instead, we
developed a simple attack that overwrites the VTable pointer
with a fake one, so the next invocation of the virtual function
will invoke the attacker controlled function.

4) Format String Exploit: Because the RIPE benchmark
does not cover attack targets used in recent attacks, we
implemented a simple program with format string vulnerability
to evaluate the ported CPS mechanism. We chose a format
string vulnerability because it is one of the most powerful
vulnerabilities that can be used as local stack read (%x), arbitrary
memory read (%s), and arbitrary memory write (%n). For attack
targets, we implemented two new attacks: GOT overwriting
and atexit handler overwriting.

5) Kernel Exploit: In the kernel, overwriting non-control
data is sufficient to obtain root permissions without hijack-
ing control flow. To test the feasibility of using HDFI to
defend against data-only attacks in the kernel, we back

10

Security	analysis

• Attack surface
• Inaccuracy of data-flow analysis

• Deputy attacks

• Best practice
• CFI is necessary (e.g., CPS + shadow stack)

• Recursive protection of pointers

• Guarantee the trustworthiness of the written value

• Use runtime memory safety technique to compensate
inaccuracy of static analysis

Summary

• Target exploit technique
• Malicious write (control-flow hijacking and data-oriented attacks)

• Malicious read (Heartbleed)

• Defense principles

• Data-flow integrity

• Practical criteria

• Performance overhead: low

• Adoption difficulty: low

Thesis	contributions	(1)

• New threats highlighting
• Code cache injection attacks

• Data-oriented attacks

• New software design
• SDCG: a new system design that resolves the confliction

between W^X policy and dynamic code injection and blocks
all code injection attacks

Thesis	contributions	(2)

• New program analysis technique
• InferDists: a new technique to automatically infer data that is

critical to kernel privilege escalation attacks

• New isolation technique
• ProtectDists: a two-layer protection scheme to enforce

efficient and fine-grained protection over selective memory
content

Thesis	contributions	(3)

• New hardware design
• HDFI: a new hardware isolation mechanism that is easy to

use, imposes low performance overhead, and allows us to
create simpler and more secure solutions

• Open source
• For better adoption in real world

• Done (SDCG, ProtectDists)

• WIP (InferDists)

• TODO (HDFI)

Future	work

• Uninitialized data access
• Information leak, DoS, control-flow hijacking, arbitrary

read/write, etc.

• Information leak
• Practical generic information leak prevention is still an open

problem

• Memory safety
• Performance and compatibility

Conclusion

• Research problem
• Principled and Practical defense techniques against memory-

corruption-based exploits

• Contributions
• Three exploit prevention techniques that advanced the state-

of-art

• Future work
• Defense against the rest two exploit techniques

Thank	you!

