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ABSTRACT
While private browsing is a standard feature, its implementation has
been inconsistent among the major browsers. More seriously, it often
fails to provide the adequate or even the intended privacy protection.
For example, as shown in prior research, browser extensions and add-
ons often undermine the goals of private browsing. In this paper, we
first present our systematic study of private browsing. We developed
a technical approach to identify browser traces left behind by a
private browsing session, and showed that Chrome and Firefox do
not correctly clear some of these traces. We analyzed the source code
of these browsers and discovered that the current implementation
approach is to decide the behaviors of a browser based on the current
browsing mode (i.e., private or public); but such decision points are
scattered throughout the code base. This implementation approach
is very problematic because developers are prone to make mistakes
given the complexities of browser components (including extensions
and add-ons). Based on this observation, we propose a new and
general approach to implement private browsing. The main idea is
to overlay the actual filesystem with a sandbox filesystem when the
browser is in private browsing mode, so that no unintended leakage
is allowed and no persistent modification is stored. This approach
requires no change to browsers and the OS kernel because the
layered sandbox filesystem is implemented by interposing system
calls. We have implemented a prototype system called UCOGNITO
on Linux. Our evaluations show that UCOGNITO, when applied to
Chrome and Firefox, stops all known privacy leaks identified by
prior work and our current study. More importantly, UCOGNITO
incurs only negligible performance overhead: e.g., 0%-2.5% in
benchmarks for standard JavaScript and webpage loading.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and protection; K.4.1 [Computers and Society]: Public Policy
Issues—Privacy
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1. INTRODUCTION
Private browsing mode is an essential security feature that has

been implemented in major web browsers, such as Firefox, Chrome
and Opera. The main goal of private browsing is to let users browse
the web without storing local data that could provide some indication
of the user’s activities during a browsing session. For example, by
setting a browser to private browsing mode, a user can browse the
Internet without saving any information about which websites and
webpages he has visited. A pilot study performed by Mozilla [33]
found that users mostly switch into private browsing mode during the
lunch break, presumably because users do not want their employers
to know what they were looking at during their lunch break.

However, prior studies have shown that an adversary can easily
compromise such a privacy goal. For example, Aggarwal et al. [1]
demonstrated that browser extensions and add-ons can easily under-
mine the security of private browsing. Their study also resulted in
a change in Google Chrome which disables all extensions while a
user remains in private browsing mode.

In this paper, we examine the security of private browsing in
Google Chrome and Mozilla Firefox. In particular, we develop an
automatic tool to identify the browser traces left behind by a private
browsing session. We find that Chrome and Firefox browser do
not correctly clear browser traces left by some browser components
when they exit a private browsing session. We demonstrate that
the failure of handling these components completely undermine the
goals of of private browsing. For example, as we will show in §3, an
adversary can infer the websites that a user has visited by accessing
the OCSP (online certificate status protocol) cache left behind by a
private browsing session.

A instinctive reaction to the above finding would be to make the
aforementioned components aware of the private browsing mode,
in particular, by preventing them from writing anything to disk
while in this mode. However, such a privacy-aware development ap-
proach relies on the developers to carefully insert condition checks
on the current browsing mode and implement the correct logic for
each mode. Given the complexities of browsers (and its extensions
and add-ons), developers are prone to make mistakes and as a re-
sult, some browser components would remain privacy-unaware, as
shown in several recent reports [8, 37].

In order to overcome the limitation of the piracy-aware devel-
opment approach, we design and implement UCOGNITO, a uni-
versal framework for private browsing mode. With UCOGNITO,
inadvertent disclosure of private information can be avoided in
spite of privacy-unaware implementation by browser developers.
UCOGNITO achieves this by overlaying the actual filesystem with
a sandbox filesystem and restricting all the modifications made by
a web browser to the sandbox filesystem when the browser is run-
ning in private browsing mode. Once the browser exists its private



browsing mode, UCOGNITO discards the sandbox filesystem and
no persistent modification is stored. Given that different browsers
define private browsing differently, UCOGNITO also provides a set
of privacy policies, thus allowing each browser to implement its
private browsing mode according to its own definition.

UCOGNITO does not require any change to browser implemen-
tation. As a result, any browsers or browser-support applications
(e.g., Chrome apps) can be run in private browsing mode no mat-
ter if the browsers or applications support private browsing mode.
Since UCOGNITO implements the layered sandbox filesystem by
interposing system calls, it does not require any modification to OS
kernel.

In summary, this paper makes the following contributions.

• We propose an automatic tool, called UVERIFIER, that exam-
ines the security of private browsing and identifies previously
unknown privacy violations in major browsers.

• We design UCOGNITO and demonstrate how it helps to im-
plement private browsing mode for both Chrome and Firefox
and how users can customize the system to suit their privacy
needs.

• We implement UCOGNITO and evaluate its functionality and
performance on Linux. We show that UCOGNITO is effective
in preventing privacy violations with negligible overheads.

The rest of the paper is organized as follows. §2 discusses the
threat model and the security goals of private browsing. §3 examines
the security of private browsing and identifies privacy unaware im-
plementation in web browsers. §4 presents the design of UCOGNITO
followed by its implementation and evaluation in §5 and §6, respec-
tively. §7 and 8 discuss the extensibility of UCOGNITO and related
work. Finally, we conclude our work in §9.

2. BACKGROUND: PRIVATE BROWSING
In this section, we begin with the threat model and security goals

of private browsing. Then, we discuss how web browsers achieve
these security goals from the perspective of their implementations.
In particular, we review the implementation of private browsing in
two open source browsers: Chrome and Firefox.

2.1 Private Browsing Mode
According to [11], private mode is commonly perceived by nor-

mal users as a mode that could provide additional privacy protection
on users’ browsing activities compared with public mode. In prac-
tice, however, it is up to the browser vendor to define what these
additional privacy protection are and some of them may not even
align with an individual user’s expectation or privacy needs.

Table 1 shows the differences in the interpretation of private
mode by five mainstream browsers. Most notably, Chrome provides
two implementations of private mode, termed Incognito Mode and
Guest Mode, respectively, and states that the Guest Mode provides
stronger privacy protection than the Incognito Mode in the sense
that accesses to persistent data stored in existing user profile, such as
browsing history, autofill etc, are blocked [12]. All other browsers
we surveyed do not provide such a Guest Mode. There are other
differences. For example, Safari allows persisting per-site permis-
sion (such as using Notification API [34]) learned in private mode
in favor of usability while other browsers disallows such operation
in favor of privacy.

We also observed conflicts between users’ privacy needs and
browser vendors’ decisions in terms of what traces should be stored
and used in private mode. For example, in one Firefox bug report

in 2009 [23], the user is having concerns that SSL client certificate
obtained in private mode should not be persisted while Firefox until
now is still persisting such data. In a recent survey on private brows-
ing [11], some participants even indicate that they would like to keep
previously acquired cookies in private mode to enable auto-login in
most websites, trading privacy for usability. In current private mode
implementation, there is no way to resolve these conflicts because
developers’ decisions are in fact hard coded in the browser and the
only option left to users is to either manually clean this trace (which
is non-trivial) or accept developers’ decisions. Our goal is to not
only respect each browser vendor but also give freedom and control
back to users for their pleasure.

2.2 Privacy Goals
Given the heterogeneity in the interpretation of private browsing

mode, it is not possible to define private browsing mode in terms
of a set of specific data allowed to be stored or used. In this pa-
per, we respect this heterogeneity and instead define the high-level
properties of private browsing. More specifically, we say that the
implementation of a private browsing mode achieves the intended
privacy protection if both goals are satisfied:

• Stealthiness: any data in private mode should not be stored
unless explicitly communicated to and agreed by the user. If
this goal fails, knowing of such persistent data would increase
the probability of recovering users’ online activities in private
browsing session.

• Freshness: any persistent data obtained from previous brows-
ing sessions should not be used in private mode unless explic-
itly communicated to and agreed upon by the user. If this goal
fails, knowing of such trace would increase the probability
of recovering users’ online activities in previous browsing
sessions.

Threat Model. We assume a same computer host-guest threat
model which both can be malicious: (1) A guest launches private
mode to prevent the host from inferring his browsing activity. The
host is assumed to have full control of filesystem after the guest
browsing session. (2) A host restricts a guest in private mode to
prevent his browsing activity from being inferred by the guest. A
guest is allowed to perform any browsing permitted by browser
during the private browsing session.

2.3 Complexity of Implementation
A naive implementation of private mode would be to disable

all features that could persistently store data in filesystem, such
as cookies, HTML5 local storage etc. However, such an approach
would allow the website to easily detect whether the user is in private
mode by testing whether such feature is accessible. In fact, for
features that persist data in public mode, browsers tend to implement
a similar but non-persistent version to give website the impression
that such features is available and hence hide any visible effect
of browsing in private mode. Such “mimicking” approach is to
satisfy the indistinguishability requirement which states that the
website should not be able to distinguish which mode a user visits in.
However, it also makes the private mode implementation inherently
complex and leads to issues that defeat the two privacy goals.

Indeed, when we reviewed the source code of Chrome 37.0.1 and
Firefox 42.0.2331, we found that both browsers follow the “mimick-
ing” approach. Moreover, the way the “mimicking” is implemented
is ad-hoc with heavy use of if-else branches and polymorphism to
achieve logic separation between public mode and private mode,
which exponentially increase code complexity.



Use Store

Category Persistent data Firefox Chrome Opera Safari IE Firefox Chrome Opera Safari IE
Incognito Guest Incognito Guest

Transparent to user

Browsing history ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
Cookies ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Cache ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
HTML5 local storage ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Flash storage ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

User action involved

Download entries ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Autofills ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
Bookmarks ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓
Per-site zoom level ✓ ✓ ✗ ✓ - - ✗ ✗ ✗ ✗ - -
Per-site permission ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗
SSL self-signed cert ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗
SSL client cert ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -

Add-on support Add-on storage ✓ ✓ - ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓
Add-on enabled by default ✓ ✗ ✗ ✗ ✓ ✓ - - - - - -

Table 1: A comparison of policies for private browsing modes in five major browsers in their default settings. Use means accessing persistent data generated in
previous browsing sessions. Store means storing persistent data generated in private browsing session. Interestingly, each browser has a different set of privacy
policies. For example, private browsing in Firefox enables its plugins but incognito mode in Chrome disables the use of add-ons.

1 // @netwerk/cookie/nsCookieService.cpp
2 DBState *mDBState;
3 nsRefPtr<DBState> mDefaultDBState; // DB for normal mode
4 nsRefPtr<DBState> mPrivateDBState; // DB for private mode
5

6 // invoked when initializing session
7 void nsCookieService::InitDBStates() {
8 ...
9 mDefaultDBState = new DBState(); // DB for normal mode

10 mPrivateDBState = new DBState(); // DB for private mode
11

12 // default: normal mode
13 mDBState = mDefaultDBState;
14 ...
15 }
16

17 // invoked when storing cookies
18 void nsCookieService::SetCookieStringInternal() {
19 ...
20 // decide which cookie DB to use, depending on the mode
21 mDBState = aIsPrivate ? mPrivateDBState : mDefaultDBState;
22 ...
23 }

Figure 1: Firefox maintains user’s objects for each mode, public and private
mode. For example, Firefox’s cookie service has two database instances,
namely mDefaultDBState and mPrivateDBState. This implementation prac-
tice makes the code base complex: for example, developers have to distin-
guish which user’s mode is activated whenever it updates a cookie value
(e.g., SetCookieStringInternal().)

For example, as illustrated in Figure 1, Firefox maintains a global
variable aIsPrivate that identifies if a browsing session is in pri-
vate mode or not. The variable is initialized while a browsing
session starts. Firefox checks the value of aIsPrivate whenever
it needs to access or modify browser cookie. Firefox defines a set
of different processes for private browsing and encapsulates them
in mPrivateDBState. As is shown in line 28 in Figure 1, Firefox
uses aIsPrivate to determine if executing the logic encapsulated
in mPrivateDBState when cookie storage or access is needed. The
situation is even worse for Chrome as it has two private mode im-
plementations: Incognito mode and Guest mode.

The code snippet in Figure 1 is just an example of how Chrome
and Firefox add complexity to their browser implementation in order
to support private browsing. In addition to cookie management, the
full implementation of private browsing in Chrome and Firefox
also makes many other components aware of the private browsing
mode, such as cache service, form auto-complete, history, SSL

1 // 1. Detecting private browsing mode @MDN
2 Components.utils.import(
3 "resource://gre/modules/PrivateBrowsingUtils.jsm");
4 if (!PrivateBrowsingUtils.isWindowPrivate(window)) {
5 ...
6 }
7

8 // 2. Detecting mode changes @MDN
9 function pbObserver() { /* clear private data */ }

10 var os = Components.classes["@mozilla.org/observer-service;1"]
11 .getService(Components.interfaces.nsIObserverService);
12 os.addObserver(pbObserver, "last-pb-context-exited", false);

Figure 2: Each addon has to take a special care on private mode: not only by
checking the current browsing mode, but also listening to the context changes.
This amount of complexity results in many privacy issues in popular addon
(see. §6.2)

certificate store etc. In short, it is a major undertaking to make
changes throughout the browser code base in order to make the
browser privacy-aware.

Given the huge code base of browser and the richness of user data,
it is unlikely that developers can correctly manage the exponential
growth of complexity. As shown in Table 2, this implementation
strategy increases the chances of bugs and privacy unawareness, and
makes browsers cumbersome and hard to respond to users’ privacy
needs. We systematically evaluate the privacy unawareness issue
caused by such implementation practice in §3.

2.4 Caveat Interface for Add-on
Although browser add-ons have been an indispensable part of

modern browsers, the automatic enabling of private browsing mode
to add-ons is not supported at all. Instead, similar to the “mimick-
ing” approaches used in instrumenting browser engine, Firefox and
Chrome only provide add-ons an interface to check the mode of cur-
rent browsing session and expect add-on developers to implement
different logic for different modes (as shown in Figure 2).

As add-ons running in private mode might cause unintended
privacy violations, Firefox takes the approach of manual app re-
view [35], which states that each add-on must pass at least a pre-
liminary review to be listed and a full review to be ranked. Since
browser add-ons are still small in code size, such review practices
are still effective in regulating add-on developers to respect the
private-browsing policy. However, with increasingly complicated
add-ons being developed, manual review might soon reach to its



Category Bug ID Browser Description

Privacy unawareness 967812 Firefox Permissions Manager writes to disk in Private Browsing Mode
37238 Chrome Cookie exception recorded while in private browsing mode

Implementation bug 553773 Firefox Entering private browsing aborts active downloads
21974 Chrome Private Browsing download window shows wrong data

Reluctance in responding to user needs 1074150 Firefox Second instance of incognito mode remembers the log-in session
471597 Chrome Sessions are not "private" when open two or more private (incognito) windows

Table 2: Bug report samples related to private mode implementation in Firefox and Chrome. It is interesting to see that both Firefox and Chrome developers
introduced similar bugs, indicating they all have no effective ways to control the implementation complexity.

limitation.
Chrome takes the “use-it-at-your-own-risk” approach. When

a user wants to enable an add-on in incognito mode, a message
(see Figure 3) will popup and alert user on the risks of their decision.
Such an approach essentially alleviate Chrome from the task of
ensuring that add-ons respect incognito mode.

Figure 3: Alert displayed when enabling incognito mode for an extension.

3. TESTING PRIVATE BROWSING
Knowing the security goals of private browsing and their im-

plementation in mainstream browsers, we developed a technical
approach to examine the security of private browsing in Firefox and
Chrome. In this section, we describe our approach and summarize
the privacy-unaware implementation that our approach identifies.

3.1 Privacy-Unaware Implementation
As we describe in §2.3, developers take the “mimicking” ap-

proach in extending the browsing engine to support private mode.
Initially, we expected browser vendors to employ a systematic ap-
proach to identify the features/components that persist data during
a browsing session, i.e., those in need of “mimicking”. Unfortu-
nately, we are unable to find any hint that Firefox or Chrome follows
such an approach. On the contrast, as evidenced in their design
documents [2, 3], most of these features are identified based on
developers’ judgment.

Such an approach might be feasible with a small code base and
in a slow development cycle. However, in the case of browser, with
the constant introduction of new techniques and standards, web
applications are given increasing power in interaction with client
machines, among which many of them introduce new opportunities
to persist data on-disk, such as HTML 5 local storage [15], and
Geolocation API [29]. Developers might not be fully aware of such
potential privacy leakage when instrumenting browser engine for
those functionalities and hence, either causing users’ browsing ac-
tivities in private mode be persisted to disk (violation of stealthiness
goal) or causing previous browsing data be carried over to private
session (violation of freshness goal). Therefore, it is not uncommon
to see the pattern shown in Table 3 in the browser’s release cycle:
a new web standard is mis-implemented by developers, causing a
privacy leakage bug which takes years to be patched.

3.2 Uverifier: Privacy Violation Detector
Motivated by the long cycle to patch a privacy violation case

(as shown in Table 3) as well as the concern that there might be
more privacy-unaware implementations, we develop UVERIFIER
to systematically check for violations of stealthiness and freshness
goals defined in §2.2 in Chrome and Firefox.

Date Event Note

Dec 2008 New standard proposed Geolocation API
May 2010 Implementation and public release Chrome 5.0
Aug 2010 Violation of incognito mode reported Issue id 51204
Apr 2013 Issue patched Revision id 192540

Table 3: The initial integration of a new web standard, Geolocation API,
caused permission settings saved in incognito session to be persisted and
have an effect in public session. It was reported after 3 months of official
release and was not patched for 3 years.

UVERIFIER consists of three major components:

• a script-based driver that drives a browsing session, including
creation of new profiles, starting/stopping browser, visiting
suspicious website and initializing plug-ins.

• a system call tracer, based on strace, that captures browsers
behavior in terms of system calls.

• an analyzer that extracts privacy violation patterns from the
system call traces.

We start each test by creating a fresh browser profile and:

• To test stealthiness goal, we run one private session (A) only.

• To test freshness goal, we run one public session (A) and one
private session (B) consecutively.

For each browsing session, the web driver starts the browser in the
desired mode, performs browsing activities and finally shuts down
the browser. The logger captures all accesses and modifications
to the underlying filesystem by recording all file-related system
calls. Unlike previous study [1] that only focused on changes in
the browser profile directory, we capture any changes made to the
filesystem.

We define any file that 1) is opened/created with write flag, 2)
has data inflow and 3) is not deleted after browsing session A as
a trace stored, denoted by ts. Any file that 1) is opened with read
flag and 2) has data outflow in browsing session B is considered a
trace used, denoted by tu. A potential violation of the stealthiness
goal is detected if any ts is found while a potential violation of the
freshness goal is detected if any ts = tu is found. We then manually
analyze these potential violation cases and filter out those cases that
cannot be used to recover users’ browsing activities, such as changes
of timestamps values.

3.3 Privacy Violations
Using UVERIFIER, we discover several previously unknown pri-

vacy violations in Chrome and Firefox and we have reported those
issues to Mozilla and Google accordingly. Here, we summarize
the components that the browser implementation is not made aware
of private browsing mode, and highlight how they compromise the
security goals of private browsing.



OCSP cache. The Online Certificate Status Protocol (OCSP) is
an Internet protocol used for obtaining the revocation status of a
certificate. Today, OCSP has been supported by many web browsers.
Using this protocol, web browsers can ensure that their users connect
to the domains that they intend to. In the Firefox case, upon receipt
of a certificate, Firefox sends an OCSP request with the certificate
serial number to the issuing Certificate Authority (CA) to query cer-
tificate validity and by default, caches the OCSP response received
at /<firefox-profile>/cache2/entries/<hash> even in pri-
vate mode. This violates the stealthiness goal of private mode be-
cause an adversary could infer the websites that a user has visited in
private browsing mode with various information in cache, including
the certificate serial number which can be uniquely mapped to a
web domain.
PNaCl translation cache. Native Client is a sandbox for run-
ning compiled C and C++ code in Chrome browser efficiently
and securely. PNaCl is a portable version of Native Client. It
allows developers to compile their code once to run in any web-
site with ahead-of-time (AOT) translation. As is described in [36],
PNaCl speeds up the loading time of PNaCl applications by caching
the translation of portable bitcode files at /<chrome-user-dir>
/PnaclTranslationCache. However, these caches are carried
over to the two private modes implemented: Incognito mode and
even Guest mode, hence providing potential mechanisms for web
tracking. For example, the developer can embed a PNaCl application
on his site, which sends a message to the site when it starts to run on
a user’s browser. The developer could measure the interval between
the time of HTTP request and the time of receiving the message
from the PNaCl application. If a relatively short interval is observed,
it is highly likely that the user is a returning visitor even though he
visits the site in private browsing mode. As an illustration on the
feasibility of such inference attack, the loading time for PNaCl app
at http://gonativeclient.appspot.com/demo/lua is about
3 seconds without cache and 0.1 seconds with cache.
Nvidia’s OpenGL cache. Similar to the PNaCl translation cache,
Nvidia’s OpenGL shader disk cache allows compiled shaders to
be cached to the system disk so that they do not need to be re-
compiled again later on, which can potentially save time by just
pulling these binaries from the disk instead. On Linux system, the
cache is usually stored at /<user-home>/.nv/GLCache/. Such
caching is on regardless of which mode the browser is running on.
Therefore, by probing the content in their cache, it is possible to
infer which website a user has visited, especially with websites that
contains rich WebGL contents. We show a simple inference attack
based on WebGL cache size only given the fact that the cache size is
highly correlated to the richness of WebGL contents. For example,
visiting a lightweight WebGL demo1 yield a 52,911 bytes increase
in cache size while a heavyweight WebGL demo2 yield a 176,777
bytes increase in cache size. Hence, by mere measuring the increase
in cache size, we could infer whether the webpage user visited is
rich in WebGL contents. Such inference is reasonable as websites
with rich WebGL contents tend to be more gaming or video oriented,
implying that the user might played a web game in the browsing
session.

3.4 Unit and Regression Testing
UVERIFIER, like other dynamic tools, requires external trigger-

ing of privacy-related features to be tested. Therefore, it makes

1available at http://threejs.org/examples/#webgl_
animation_cloth
2available at https://developer.mozilla.org/en-
US/demos/detail/the-polar-sea/launch
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Figure 4: UCOGNITO architecture and its UCOGNITO interaction with
browser and persistence layer. Upon initialization of UCOGNITO, data in
persistence layer is brought to the filesystem sandbox based on the policy
specified. In this case, a COPY policy is attached to both autofill DB and
bookmarks to allow them being transferred to the filesystem sandbox 1 , 2
while transferring of cookie DB is prohibited by a CLEAN policy, therefore, an
empty cookie DB is created. During the private browsing session, browser
services will only interact with the data in filesystem sandbox ( 3 - 8 ), which
gives the browser an impression that it is interaction with the underlying
persistence layer. Upon finishing of the browsing session, data is written
back to the persistence layer ( 9 ) if it is attached with the WRITE policy.

perfect sense for browser developers or add-on developers to inte-
grate UVERIFIER into their unit and regression testing procedures to
maximize code coverage by UVERIFIER and eliminate unintentional
mistakes that lead to privation violations.

For cautious users whose browsing habits are fairly stable, they
can employ UVERIFIER to check against privacy violation cases in
their normal browsing and add-on usage pattern.

4. UCOGNITO: NEW FRAMEWORK FOR
PRIVATE BROWSING

Designing and implementing private mode can be non-trivial as
illustrated in §2 and §3. Motivated by this, we propose UCOGNITO
that radically changes the view of private mode in browser and the
way how it should be implemented.

4.1 Overview
In UCOGNITO, we decouple private mode implementation from

browser code base, i.e., we do not consider private mode as a
browser-specific feature which, implementation-wise, is indispens-
able from the browser code base. Instead, we consider it as an
customizable overlay that will automatically provide the intended
privacy goals of private mode when put on top of any browser
implementation.

To achieve this goal, UCOGNITO abstracts out the notion of pri-
vate mode from browsers and contain all the logic related to private
mode within itself. In other words, at runtime, the browser is trans-
parent to which mode it is running in and will always uses the exact
same code and logic for both private mode and public mode. In
this way, private mode effectively becomes a concrete and separate
module instead of pieces of logics scattered across all features that
might persist data and UCOGNITO serves as one central point for
testing and configuring private mode.

4.2 Architecture
Filesystem sandboxing. As shown in Figure 4, UCOGNITO em-

http://gonativeclient.appspot.com/demo/lua
http://threejs.org/examples/#webgl_animation_cloth
http://threejs.org/examples/#webgl_animation_cloth
https://developer.mozilla.org/en-US/demos/detail/the-polar-sea/launch
https://developer.mozilla.org/en-US/demos/detail/the-polar-sea/launch


ploys filesystem sandboxing to give browsers an impression that
it is interacting with the actual filesystem in the persistence layer
while in fact, the browser only interacts with the sandboxed filesys-
tem. Such a design creates an isolated filesystem environment for
the private browsing session and hence, all traces generated in the
session is collected and retained in the sandbox.
Policy system. Policy system kicks in at two points,

• Upon starting the private browsing session, only persistent
data that are explicitly given the "read" access is copied into
the filesystem sandbox.

• Upon finishing the private browsing session, traces collected
in the sandboxed filesystem is conditionally written back to
the filesystem in persistence layer if such data is given the
"write" access. For the traces that are not written back, they
are discarded after the session finishes as the whole filesystem
sandbox only lives in memory, which is freed after the private
browsing session.

4.3 Challenges and Solutions
The design of UCOGNITO involves two challenges. First, it needs

to respect the heterogeneity in the interpretation of private mode
by different browser vendors and users, as described in §2.1 Sec-
ond, it has to address both privacy goals defined in §2.2 and be
indistinguishable to websites §2.3.

In accommodating heterogeneity in the interpretation of private
mode, UCOGNITO employs a policy system to allow for flexible
configuration on the storing or using of each type of persistent data.
In the view of the policy system, each file in the filesystem is bundled
with two policies:

• Allow/deny write access, corresponding to whether the per-
sistent data is allowed to be stored in the file during private
browsing session.

• Allow/deny read access, corresponding to whether persistent
data contained in this file can be used during private browsing
session.

Hence, by toggling the policies bundled with each file, both users
and browser vendors can express their interpretation of private mode.

In guaranteeing the stealthiness and freshness goal, we design the
policy system to take the "whitelist" approach. To be specific, the
following logic is wired into the policy system:

• Strongest protection by default: without any policy specified,
complete isolation, i.e. deny all read/write accesses, must be
assumed.

• Conservativeness: any type of persistent data that is not ex-
plicitly agreed or expected by the user should not be left or
shared. In other words, if storing or using of persistent data is
intended, it must be mentioned as a policy.

This ensures that users have full knowledge and control on the types
of persistent data stored and used in private mode. Therefore, by
definition, both stealthiness and freshness goals are achieved

UCOGNITO also increases the indistinguishability between pri-
vate mode and public mode by eliminating attacks that rely on the
differences in browser implementation of public mode and private
mode. For example, the hyperlink attack demonstrated in [1] relies
on the fact that most browsers do not render visited link in purple
in private mode. With UCOGNITO, such attack will effectively be
mitigated.

4.4 Sandboxing Layer
To isolate the trace of a private mode from the system, our general

approach is to apply a filesystem sandbox on the commercially off-
the-shelf web browsers. We assume that the filesystem is the only
persistent storage on the system. In other words, we ignore all
in-memory components as it has already been isolated under the
process isolation mechanism on the system.

Isolation of the filesystem can be done by rewriting the path to
the contained location, in particular, by intercepting system calls
on its entrance. When the browser accesses a file with the open
system call, our sandbox hooks its entrance and changes the “path”
argument to the sandbox directory. For example, if the path is to
/home/user/.config/*, we redirect this to
/tmp/ucognito-PID/home/user/.config/*. This redirection was
originally introduced in MBox [17].

However, MBox only supports the redirection of the filesystem
to the ephemeral location (e.g. /tmp/*), and it lacks the policy to
determine which file to read or not to read, and only has manual
options to discard or commit the changes to the host filesystem from
the sandbox. In UCOGNITO, we need to support more options such
as choosing files to be included or to be cleaned, and then writing
back the configurations to the original profile. Accordingly, we add
features to MBox to support selective writing on all changes in the
filesystem.

Details of the implementation of our sandbox is described in
section §5.1.

4.5 Policy System
To satisfy the flexibility requirement, i.e. configurable private

mode, in UCOGNITO, we provides a policy system over sandbox
isolation. Our policy have three types:

• CLEAN: create an empty file to prevent file-copying from the
original user profile to the private profile;

• COPY: copy a file or sub-directory to the private profile from
existing user profile, to employ existing settings;

• WRITE: allow data to be written back to the user profile after
the session closes.

We use the CLEAN policy to support running a browser or an exten-
sion at its pristine stage (i.e. first-time execution of the browser). If
a path is specified as CLEAN, we create an empty directory and files
for its sub-directory elements then redirect all further access. Next,
COPY is for applying existing session information to the sandbox.
Either a path from the original profile or a path from a different
location can be chosen, to load the clean a profile from the file.

For the WRITE policy, we memorize the original location where it
is read (i.e. from COPY), then write back the trace after the browser
instance terminates.

These policies are defined to determine which files is loaded into
the profile, and what data is committed back to the profile. COPY and
CLEAN are for “read” property, as it determines how to load a profile
into the session. WRITE is for “write” property, as it specifies how to
deal with trace data created by the session.

Enforcement of these policies can be done as follows. For CLEAN
files, we create files on the sandbox location; for COPY, we copy
the file from the location to the sandbox path. After creation of the
files, we restrict the browser instance’s access (using further open,
read, write, etc.) to the file within the sandbox container. The
WRITE policy is enforced at the end of execution of the web browser
session. When exiting the sandbox, all files specified with WRITE
are written back to the original location of the filesystem with the
contents of the files in the sandbox filesystem.



The policy can be defined as INI-style file (a .cfg file); each
policy is divided into sections (e.g. [copy] and [clean]) with the
listing of files or directory entries (if ends with “/”)
Example: Chrome’s Private Browsing. We present examples of
our policy definition in for the incognito mode and guest mode of
Google Chrome in Figure 5 and Figure 6, respectively.

For the private mode of Google Chrome, it is allowed to read:
1) browsing history, 2) autofills, 3) download entries, 4) per-site
preferences, 5) custom SSL certificates, 6) bookmarks, and 7) exten-
sion storage. To support each of these, we list the files that belongs
to each access at the COPY sections. Then, we mark the directory
that Google Chrome stores user profile for the normal instance in a
CLEAN section to prevent accesses to the files that are not specified
in the COPY sections. The private mode of Google Chrome stores
bookmarks and extension storage that have been changed during
the private mode execution. Thus, we specify files and directories
reserved for those data at the WRITE section to store the changes
when the session terminates.

The policy definition for guest mode of Google Chrome is quite
simple. Since it does not need to access anything from the user’s
profile except for the certificate store cert9.db, we just mark the
home directory for the user as CLEAN and add both COPY and WRITE
cert9.db. These examples show that our policy is flexible enough to
easily support existing implementation of private modes of different
web browsers.

With these two policy files, it is clear to see that the guest mode
provides much stronger browsing privacy than the Incognito Mode.
It also shows the easiness of customization, i.e., if a user is not
satisfied with the policy for incognito mode, he/she could easily
modify it to meet his/her own privacy needs. Implementation details
of policy are described in §5.2.

5. IMPLEMENTATION
We implemented the sandbox, the policy, and additional UI layer

(in §5.3) on the Linux operating system, for the distribution Ubuntu
14.04 LTS that runs Linux Kernel 3.13.0. Since we utilize Com-
puting/Berkeley Packet Filter (seccomp-bpf [9]) for system call
hooking mechanism, we need the kernel version over 3.5.

Figure 7 shows that the complexity of the implementation of
UCOGNITO in terms of lines of code. We only wrote 564 lines of
code to support all three layers, which we describes in the following
subsections.

5.1 Sandboxing Layer
We implemented the sandboxing layer using the same mechanism

in a MBox filesystem sandbox [17]. Basically, the sandbox hooks all
file-related system calls, then rewrites the path argument to isolate a
file at certain path into an ephemeral location, i.e. under /tmp.
System call hooking. System call hooking is done with seccomp-
bpf, which provides an easy and fast way of intercepting system call
entry/exit. We placed hooks on 50 syscalls that deal with file path.
For example, open, creat, unlink, stat, mkdir, rmdir, symlink,
readlink, etc. are the system calls that operate on an argument that
specifies a location in the filesystem.

In addition to the file-related system calls, we additionally placed
a hook on the bind syscall. The reason is that when bind is called
with the AF_UNIX argument (to create a Unix Socket), the port that
the socket is bounded to is not a network location; instead, it is
a file path (e.g. /tmp/.com.google.chrome.*/SingletonSocket).
Therefore, we place a hook on bind, and on its entrance, check if it
is called for AF_UNIX. Then, we re-write the path if it is required to
be contained in the sandbox.

1 # copy section: copying files from the user profiles
2 [copy]
3 # Use: browsing history
4 ~/.config/google-chrome/Default/History
5 ~/.config/google-chrome/Default/History-journal
6 ~/.config/google-chrome/Default/Visited Links
7 ~/.config/google-chrome/Default/Favicons
8 ~/.config/google-chrome/Default/Favicons-journal
9 ~/.config/google-chrome/Default/Top Sites

10 ~/.config/google-chrome/Default/Top Sites-journal
11

12 # Use: autofill data
13 ~/.config/google-chrome/Default/Login Data
14 ~/.config/google-chrome/Default/Login Data-journal
15 ~/.config/google-chrome/Default/Web Data
16 ~/.config/google-chrome/Default/Web Data-journal
17

18 # Use: per-site preferences
19 ~/.config/google-chrome/Default/Preferences
20 ~/.config/google-chrome/Default/Secure Preferences
21

22 # Use: SSL certificates
23 ~/.config/google-chrome/Default/TransportSecurity
24 ~/.config/google-chrome/Default/Origin Bound Certs
25 ~/.config/google-chrome/Default/Origin Bound Certs-journal
26

27 # Use: SSL client certificates
28 ~/.pki/nssdb/cert9.db
29

30 # Use: bookmarks
31 ~/.config/google-chrome/Default/Bookmarks
32

33 # copy section: include all subdirectory
34 [copy]
35 # Use: extension storage
36 ~/.config/google-chrome/Default/Local Extension Settings/
37

38 # clean section: exclude files & sub-directories
39 [clean]
40 # exclude all other files in the home directory
41 ~/
42

43 # write section: write-back data to the user profile
44 [write]
45 # write-back bookmarks
46 ~/.config/google-chrome/Default/Bookmarks
47 # write-back client certificates
48 ~/.pki/nssdb/cert9.db
49 # write-back extension storages
50 ~/.config/google-chrome/Default/Local Extension Settings/

Figure 5: Policy configuration file for the private mode of Google Chrome.

1 # exclude all files in home directory
2 [clean]
3 ~/
4

5 # Use: SSL client certificates
6 [copy]
7 ~/,pki/nssdb/cert9.db
8

9 # write-back client certificates
10 [write]
11 ~/,pki/nssdb/cert9.db

Figure 6: Policy configuration file for the guest mode of Google Chrome.

Note that we do not place any hook for read, write, send, or
recv, which are very frequently called in networked applications
like web browser. Since we rewrite the “path” argument only at
the entrance of the system call, the interception happens very rare;
the overhead of hooking is very low. Please refer to §6 for the
performance overhead of the sandbox.
Containing file access. To contain file accesses, we rewrite the
path argument on each system call entrance. For example, on open
system call, if the first argument (path) is on /home/user/.config,
then we overwrite the path into the contained location (e.g. /tmp)



Component Lines of code
Sandbox & Policy 415 lines of ANSI-C
UI Layer 149 lines of Java and Python
UCOGNITO 564 lines of code
MBox [17] 24,311 lines of ANSI-C
MBox + UCOGNITO 24,827 lines of code
UVERIFIER 533 lines of Python

Figure 7: Components of UCOGNITO and an estimate of their complexities
in terms of lines of code. UCOGNITO has very few (564) lines. Note that we
deleted/commented-out unused part of MBox (48 lines) so that total number
of lines are not matched with addition of the two numbers. We also note that
our verifier, UVERIFIER has 533 lines of Python code.

by adding a prefix to the path, that is, we rewrite the path to
/tmp/ucognito-pid

/home/user/.config. Since the rewriting happens before entering
the kernel execution, the file descriptors opened for the redirected
path. Thus, further read/write (accessed with file descriptor) auto-
matically happens on the file at the contained location. Note that this
rewriting operation is done outside of the sandbox. Since we placed
hooks for all file-related system-calls, the web browser instance
running in the sandbox environment cannot bypass this re-writing
routine.

5.2 Policy System
We implemented our policy system designed in §4.5 on our

filesystem sandbox. For each policy section (CLEAN, COPY, or WRITE),
they can have two types of path entries: a file or a directory entry.
Note that the enforcement is handled differently for files and direc-
tories (including all sub-directory entries). We describe the rules on
accessing files and directories under our policy system as follows.
File: initialize before start. For the file entry, we initialize them
during initialization of the sandbox; i.e., before running the browser
application. For files marked as COPY, we duplicate the specified
file from the host filesystem to the sandbox filesystem. For files
marked as CLEAN, we simply create an empty file on the sandbox
filesystem. After the file is initialized in this way, all further access
(both read/write) to those files are contained (by path rewriting) in
the sandbox filesystem.
Directory: initialize upon access. For directory entries, we initial-
ize them in lazy way, i.e., only when a system call is issued to access
a path under the specified directory. Upon the interception of such
system call, we get the path argument and check if the path is under
the directory listed in a COPY or CLEAN section of the policy file. Note
that if the path does not belongs to any of directory listed in the
policy, we copy the file in the sandbox filesystem. This is to support
loading of libraries (e.g. *.so files) and other files that is required
but does not related to the private mode of the web browser. To pre-
vent this automatic COPY rule being applied to the whole filesystem,
policy writer must specify the path, which is usually the user’s home
directory, in the CLEAN list to opt-out from this rule. In case of a path
is matched with the entry in both CLEAN and COPY (e.g. ~/.config is
in COPY while ~/ is in CLEAN), we set COPY overrides CLEAN to follow
the policy of white-listing of the read access.
Data write-back. For WRITE policy, we enforce the policy when
the protected application (in our case, the browser) terminates. Upon
exiting the application, we get the list of modified files in the sandbox
filesystem. Modification is detected by comparing hash of contained
file with that of the file in the host filesystem. Then, we check if
a path belongs to any of policy definition. For a file entry, if the
path is matched, then it is written back to the source file at the host

Figure 8: UI highlights for UCOGNITO. Figure on the left shows normal
running of Mozilla Firefox; on the right, our UI highlight is shown as pink
border line to indicate UCOGNITO is working for the web browser.

filesystem. Likewise, for the directory entry, if prefix matches, we
perform the same operation.

5.3 UI Layer
In UCOGNITO, since it wraps the normal web browser with sand-

box to make it as private mode, there is no UI indicator like Mozilla
Firefox and Google Chrome. To the user, it is very important to
know the mode of the current session. We employ a very simple
method: highlighting the border of the window with different colors.

Figure 8 shows an example. We keep track of the focus on the
X11 window display. Whenever focus changes, we check if the
currently focused window is in private mode. If it is, we retrieve the
size of the window, then draw a colored, thick borderline rectangle
over the window. We implemented the drawing part with JPanel and
make the rectangle always-on-the-top so that it cannot be hidden by
the browser window.

5.4 Launching a Private Mode
Launching a web browser with UCOGNITO is quite simple. The

following command launches Google Chrome web browser with
the specified policy file:

1 $ ucognito -P chrome_incognito.cfg -- google-chrome

The option argument -P indicates the location of policy file de-
scribed above. At the time of launching, before executing the actual
web browser program, UCOGNITO applies policy first to create a
new file (for CLEAN policy) or copy a file (for COPY). Afterwards,
UCOGNITO applies the sandbox by calling seccomp syscall and
then executes browser instance. The whole procedure for private
browsing under UCOGNITO can be divided into four phases:

1. Initialization phase. Load the policy file (if specified), then
applies pre-execution policies (e.g. COPY or CLEAN file entries);

2. Browser starting phase. Create a new process, place hooks on
50 file-related system calls using seccomp-bpf;

3. Browsing phase. Launch the browser to let user browse in
private mode;

4. Cleaning phase. Depending on the WRITE policy, check if any
file belongs to the policy has been changed. If any, then write
back the file to the host filesystem to make it persist.

6. EVALUATION
The goal of our evaluation of UCOGNITO is to answer:

1. What are the uses cases for UCOGNITO? (§6.1, §6.2)



2. How flexible and general is UCOGNITO’s policy in imple-
menting private browsing schemes of popular browsers? (§6.3)

3. How much performance overheads does UCOGNITO incur?
(§6.4)

Experimental setup. To evaluate UCOGNITO, we ran Mozilla
Firefox 37.0.2 and Google Chrome 42.0.2311.152, on Ubuntu 14.04
LTS, running 64-bit Linux Kernel 3.19.0. We ran our experiments
on commodity hardware, equipped with Intel Xeon E5-1620 (one
CPU, quad core, and 3.6GHz) and 16GB of RAM.

6.1 Preventing Privacy Violations
We tested the effectiveness of UCOGNITO in protecting against

the privacy violations we found in §3.3. Our results showed that
UCOGNITO is able to mitigate all these privacy violation cases:

• OCSP cache. We ran a single private browsing session to visit
a HTTPS site. We observed that OCSP cache files generated
in the temporary filesystem during the private browsing ses-
sion are subsequently cleaned after the session finishes. None
of these cache files are written back to the original filesystem.

• PNaCl translation cache. We first ran a public browsing
session to generate PNaCl translation cache first and sub-
sequently ran a private browsing session to access the same
PNaCl app3. Unlike in §3.3, we observed no discernible
loading time differences between these two sessions.

• Nvidia’s OpenGL cache. We first ran a public browsing ses-
sion to generate Nvidia’s OpenGL translation cache and sub-
sequently ran a private browsing session to access the same
WebGL app4. Unlike in §3.3, we observed no differences
in the Nvidia cache file in original filesystem and found that
new cache files are generated and subsequently deleted in the
temporary filesystem.

6.2 Supporting Add-ons
Add-ons can be a major source of privacy violation in private

mode, as evidenced in §2.4. We tested the effectiveness of UCOGNITO
in protecting against the privacy violations brought by add-ons. We
evaluated UCOGNITO against four popular Chrome extensions with-
out modification to the policy defined in Figure 5. We chose these
add-ons not only because of their popularity, but also because we
expected them to cause privacy violations as their core functionality,
i.e., session, history and autofill management, inevitably involve
user private data. As shown in Table 4, UCOGNITO successfully
prevented all privacy violations found in those four extensions, indi-
cating that UCOGNITO is a promising candidate in enabling private
mode support for add-ons without making any changes to those
add-ons.

6.3 Policy Flexibility
We measured the flexibility of our policy system in terms of

how fine-grain we can achieve in modelling a specific private mode.
Since UCOGNITO only provides per-file granularity for policy spec-
ification, if two types of persistent data are contained in one single
file and their use/store behavior is different in private mode, our
policy system will not be able to model that. Otherwise, we can
always define a policy to match the intended definition of private
3available at http://gonativeclient.appspot.com/demo/
lua
4available at https://developer.mozilla.org/en-
US/demos/detail/the-polar-sea/launch

Benchmark Firefox Chrome
Base UCOGNITO Base UCOGNITO

Kraken (ms) 1171.1 1171.2 (0.0%) 1108.6 1115.2 (0.6%)
Sunspider (ms) 158.3 159.8 (0.9%) 173.1 177.4 (2.5%)
Octane (pts) 27164 27013 (-0.6%) 27266 27018 (-0.9%)

Table 6: Performance overheads of standard JavaScript benchmark on Fire-
fox and Chrome running with UCOGNITO: the worst case performance
overhead is around 2.5%

Website Base UCOGNITO Overhead

Google.com 193 ms 196 ms 1.55%
Bing.com 190 ms 193 ms 1.58%
Twitter.com 599 ms 614 ms 2.50%
Facebook.com 256 ms 259 ms 1.18%

Table 7: Page loading time in Google Chrome, with and without UCOGNITO.
The private-aware browsing with UCOGNITO incurs negligible overhead
(<15 ms).

mode. We show the mapping of persistent data to its container in Ta-
ble 5, and from the table it can be shown that for Firefox, browsing
history, downloaded entries and bookmarks are all persisted in the
the same file, places.sqlite. If we attach the WRITE policy to allow
saving bookmarks in private mode, then the browsing history will
be persisted too, which is not user intended. User or browser vendor
is forced to make a trade-off decision on this (although we believe
a better design is to have Firefox separate them). However, this
is the only case in Table 1 that cannot be expressed as a policy in
UCOGNITO. For any other item, enabling loading of it in private
mode requires only one COPY policy while enabling storing of the
item requires only one WRITE policy.

6.4 Browsing Performance
Since UCOGNITO heavily places hooks on the system calls, it

affects the running time of web browser. To measure the perfor-
mance overhead, we ran two types test: 1) JavaScript benchmark,
and 2) measurement of page load time. While JavaScript benchmark
shows the performance overhead in the computational core of the
web browser, the page load time exhibits the actual performance of
what user would experience because it measures the delay from the
user action to the time when the page is ready to serve.

Benchmark setup is done as follows. For the baseline, we ran the
browser instance with private mode from the command-line. For
UCOGNITO, we ran with the command discussed in §5.4, enabling
the policy that is equivalent to private mode of the baseline.

It is worth noting that since our sandbox uses /tmp, a kind of
ramdisk, for its ephemeral storage, access on those files are much
faster than running web browser alone. To avoid performance skew
caused by this, for the baseline running, we mapped our home
directory (i.e. /home/user) as a same ramdisk (mapped as tmpfs)
during the evaluation5.

For JavaScript, we ran three benchmark programs: Kraken [24]
from Mozilla, Sunspider [38] from Webkit, and Octane [13] bench-
mark from Google. Table 6 shows the result of the benchmark. We
ran the benchmark for 10 times and took the best value for each
case. All results except one exhibits less than 1% of overhead and
the worst case, Sunspider on Google Chrome, incurs only 2.5% of
execution overhead. Since seccomp-bpf is very light weight, and
we only place hooks on the system calls that initiate file access and
5Without this settings, UCOGNITO shows better performance than
the baseline.

http://gonativeclient.appspot.com/demo/lua
http://gonativeclient.appspot.com/demo/lua
https://developer.mozilla.org/en-US/demos/detail/the-polar-sea/launch
https://developer.mozilla.org/en-US/demos/detail/the-polar-sea/launch


Add-on # users Violation trigger Behavior in Chrome Incognito Mode Behavior in UCOGNITO

Session Buddy 373409 Visit any website Almost everything persisted, including his-
tory, caches, cookies, extension settings, etc.

Only changes in Local Extension Settings are writ-
ten back to original filesystem as per policy, other
changes are discarded

StayFocusd 600944 Start the timer on a website Log file in Sync Extension Settings con-
tains the website url

The log file is deleted in the temporary filesystem upon
completion of the session

Better History 248112 Visit any website Website URL saved in log file in
Extension State

The log file is deleted in the temporary filesystem upon
completion of the session

Lazarus Form Recovery 125709 Fill in a HTML form Form entries saved in extension database in
databases/chrome-extension-<uuid>_0/1

Form entries saved in database file in temporary filesys-
tem and is not written back to the original filesystem

Table 4: Using UCOGNITO for automatically enabling private mode for add-ons.

Category Persistent data Firefox Chrome

Transparent to user

Browsing history /<firefox-profile>/places.sqlite /<chrome-profile>/History
Cookies /<firefox-profile>/cookies.sqlite /<chrome-profile>/Cookies
Cache /<firefox-profile>/cache2 /<chrome-profile>/Cache
HTML5 local storage /<firefox-profile>/webappsstore.sqlite /<chrome-profile>/Local Storage
Flash storage /<user-home>/.macromedia/Flash_Player /<chrome-profile>/Pepper Data/Shockwave Flash

User action involved

Download entries /<firefox-profile>/places.sqlite /<chrome-profile>/History
Autofills /<firefox-profile>/{key3.db, formhistory.sqlite} /<chrome-profile>/{Login Data, Web Data}
Bookmarks /<firefox-profile>/places.sqlite /<chrome-profile>/Bookmarks
Per-site zoom level /<firefox-profile>/content-pref.sqlite /<chrome-profile>/Preferences
Per-site permission /<firefox-profile>/permissions.sqlite /<chrome-profile>/Preferences
SSL self-signed cert /<firefox-profile>/cert8.db /<chrome-profile>/Origin Bound Certs
SSL client cert /<user-home>/.pki/nssdb/cert9.db /<user-home>/.pki/nssdb/cert9.db

Add-on support Add-on storage /<user-home>/ with XPCOM components /<user-home>/ with NaCl support
Add-on installation /<firefox-profile>/{extensions, extensions.json} /<chrome-profile>/{Extensions, Local Extension Settings}

Table 5: Mapping of each type of persistent data in Table 1 to the underlying file that contains it. It is possible that multiple types of persistent data is mapped to
the same file, for example, for both Firefox and Chrome, browsing history and download entries are all persisted in the same file.

Website Base UCOGNITO Overhead

Google.com 277.4 ms 279.6 ms 0.79%
Bing.com 207.8 ms 208.4 ms 0.29%
Twitter.com 1020.9 ms 1030.3 ms 0.92%
Facebook.com 443.9 ms 446.7 ms 0.63%

Table 8: Page loading time in Mozilla Firefox, with and without UCOGNITO.
The private-aware browsing with UCOGNITO incurs negligible overhead
(<10 ms).

not for the subsequent frequently invoked system calls that perform
actual access (e.g. read/write), the overhead is very low.

To measure the delay that the user might experience, we com-
pared the page load time of popular websites. To measure page
load time from Google Chrome, we used an extension named “Page
load time [7]” developed by avflance. In Mozilla Firefox, we used
a different extension called “app.telemetry Page Speed Monitor
14.0.7 [22]” because “Page load time” is not available. We mea-
sured the average loading time, by accessing the page 10 times per
each website. We discarded the loading time of the first access to
eliminate performance skew of caching (in effect, we only measured
the subsequent, cached accesses).

Table 7 and Table 8 show the benchmark results from Google
Chrome and Mozilla Firefox, respectively. All results except one
show around 1% of overhead, while the worst case - the loading of
twitter.com takes 15 ms (2.5%) more time to load. Both JavaScript
and page load time benchmarks exhibit fairly consistent result. Most
of the time, it shows around 1% overhead; even the worst case only
incurs 2.5% overhead. This shows that the overhead introduced by
UCOGNITO is very negligible in practice.

7. DISCUSSION

In addition, we further discuss the advantages of UCOGNITO and
its other potential applications.
Personalized private mode. UCOGNITO aims to provide person-
alized private mode instead of setting a model solution for a single
private mode implementation. We respect that every user has his
or her unique privacy needs, which might not be satisfied by the
default policy provided by browser vendors. Therefore, a primary
design goal and advantage of UCOGNITO is that complete control
is given to the end-users with regard to private browsing.
Portable architecture. UCOGNITO is not designed solely for
browsers, in fact, we believe that UCOGNITO can be readily ported
to support other applications that are yet to have an incognito mode
available. For example, similar to not leaving traces about browsing
activities, users of video players might not want the player to leave
traces about the video played, for example, recording the filename in
the playlist. But to the best of our knowledge, there is no player that
provides this functionality. Users have to manually delete the entry
from playlist and still they are not assured that there might be traces
left in other places. UCOGNITO can handle this situation perfectly
by redirect any write to filesystem to a temporary location and
delete this location after the incognito session. In fact, we believe
UCOGNITO can be ported to multiple applications with minimal
modifications.
Cross-platform design. All of the underlying techniques used by
UCOGNITO are readily available since Linux kernel 3.17, hence,
there is no technical obstacle to port UCOGNITO to other Linux-
based OSes such as Android whose users might have more privacy
incentives to use incognito mode. In addition, most non-Linux based
OSes have similar substitutes of the core techniques we use. For ex-
ample, ptrace used in UCOGNITO for system call hooking is readily
available in Mac OS and can be substituted by API hooking [5] in
Microsoft Windows.



8. RELATED WORK
Since UCOGNITO deals with problems in private browsing using

filesystem isolation, we discuss the related works previously done
as follows.
Private browsing. Private browsing is the first line of work most
closely related to our work, and research in this domain mainly
focus on two aspects. First, previous studies focus on measuring and
preventing privacy leak of a web browser to the persistent storage.
Aggarwal et al. [1] reviewed how private mode is implemented in
mainstream browsers. They found the implementation of private
mode in the browser does not provide enough privacy guarantee.
Browsing history, DNS cache, swap files, and extensions could
undermine the privacy guarantees. They developed a technical
mechanism that prevents browser extensions from unintentionally
leaving traces about private activities. Heule et. al. [14] proposed
a new extension system design based on MAC to protect users’
privacy. While these works only handles unintentional leaving of
trace from the extensions, UCOGNITO can protect both reading of
profile data and leaving of traces; also, not only for the extensions,
the protection from UCOGNITO works on the whole web browser.
Lerner el. al. [18] analyzed browser extensions to check whether
the extensions are violating privacy under private mode. While their
work is a static tool that only detects the violation, UCOGNITO is a
runtime tool that works on both detection and prevention of privacy
violation during the execution of the web browser. Gao et. al. [11]
did a survey on the user perception of private browsing. They discov-
ered several mismatches between private browsing implementation
and the user expectations. In our work, we did through analysis
on the privacy leaks and traces of private mode that supports their
study, and we tries to solve the problem of mismatch by building a
user-configurable policy to get back the control of data from the web
browser developer to the user, in order to meet their expectation.

On the other hand, previous studies attempt to perform web brows-
ing without tracking. To achieve this goal, a number of studies have
been performed [10, 21, 28, 30]. However, these works are orthogo-
nal to our work in that they attempt to prevent privacy leak to the
network while our work addresses the problem of privacy leak to
the persistent storage. In addition, previous works for attacking
privacy using browser fingerprinting based on software/hardware
configurations [25, 26] are out-of-scope, while UCOGNITO can de-
fend against user fingerprinting based on the traces such as cookie
and extension storage like Evercookie [16]. UCOGNITO can be
configured to delete all traces after the browser session closes.
Sandbox and isolation mechanisms. In terms of technical ap-
proach, our work resembles application sandboxing mechanisms
that separate code execution in an isolated environment and undo
its effect. In the past, many of such mechanisms have been de-
veloped, e.g., Cowdancer [32], FL-COW [20], Alcatraz [19], and
MBox [17]. They could prevent an untrusted program from modi-
fying filesystem by layering a sandbox filesystem on top of actual
filesystem. Although sharing a similar idea – layering filesystem
– with these previous mechanisms, our work has a completely dif-
ferent focus. Rather than preventing an untrusted program from
modifying filesystem, our work primarily utilizes layered filesystem
to provide privacy guarantees. There are several other solutions
that isolate the whole environment of the application from the other
applications, or even from the operating system. Onarlioglu et al.
introduce PRIVEXEC [27], which provides a privacy guarantee for
the application execution environment. Virtual machines are fre-
quently used for the isolation mechanisms. Previous works such as
Overshadow [6], Storage Capsule [4], and Qubes OS [31] are mech-
anisms that provides strong isolation based on the virtual machine.

From the perspective of implementation, many of aforementioned
mechanisms incur OS kernel modification which significantly nar-
rows their compatibility, (e.g., FL-COW, and PRIVEXEC), or re-
quires virtualization that incurs a high runtime performances penalty.
In contrast, we emphasize that UCOGNITO is a light weight scheme
which requires no changes to OS kernel or applications.

9. CONCLUSION
In this paper, we have presented a new approach to implement

private browsing. Our work was motivated by the observations that
private browsing is not implemented consistently and correctly in
major browsers. We developed a systematic approach to identify that
browsers such as Chrome and Firefox do not clear some of the traces
left behind by a private browsing session, and thus compromising
privacy goals. We analyzed the browser source code to learn that
developers have to put in many conditional checks to invoke the
appropriate logic for the current browsing mode (i.e., private or
public) .

Our new approach relieves developers from having to carefully
consider private browsing, and more importantly, produces a consis-
tent and correct private browsing mode across browsers. The main
idea is to overlay the actual filesystem with a sandbox filesystem
when the browser is in private browsing mode, so that no unintended
leakage is allowed and no persistent modification is stored. We
have implemented a prototype system called UCOGNITO on Linux.
UCOGNITO requires no change to browsers and the OS kernel be-
cause the layered sandbox filesystem is implemented by interposing
system calls. Our evaluations show that UCOGNITO, when applied
to Chrome and Firefox, stops all known privacy leaks identified by
prior work and our current study. In addition, UCOGNITO incurs
only negligible performance overhead (1%-2.5%).
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