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Running unit tests takes too long

It’s our policy to make sure all 
tests pass at all times.

● Large software programs often require running full 
unit tests for each commit

● But, unit tests take about 10 min in Django
● With our work, it can be done within 2 sec!
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Current approaches for shortening 
testing time

● Modular unit tests (e.g., testsuite)
– Run a certain set of unit tests that might be affected

● Test bot (e.g., gtest, autotest)
– Run unit tests remotely and get the results back
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Problem: current approaches are 
very limited

● Manual efforts involved
– Maintaining multiple test suites

● Overall testing still takes too long
– Waiting for Test bot to complete full unit testing
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Research: regression test selection 
(RTS)

● Goal: run only necessary tests instead of full tests

– identify test cases whose results might change due 
to the current code modification

– Step 1: analyze test cases (e.g., execution traces)
– Step 2: syntactically analyze code changes
– Step 3: output the affected test cases

RTS
Code changes

Affected test 
cases

Test cases
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Problem: RTS techniques are 
never adopted in practice

● “Soundness” of RTS techniques kills adoption
– Soundness means no false negatives

– Impose non-negligible perf. overheads (analysis/runtime)

– Select lots of test cases (particularly in dynamic languages)

– e.g., changes in a global variable  run → all test cases
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Goal: make RTS practical

● Idea 1: trade off soundness for performance
– Keep track of function-level dependency / changes

– Fewer tests selected, may have false negatives

● Idea 2: integrate test optimization into dev. cycle
– Maintain dependency information in code repository
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Current development cycle

<HEAD>

Source tree
<HEAD>

Repository server

Programmer's computer

Check out code①

Local repo.
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Current development cycle

<HEAD>

Source tree
<HEAD>

Repository server

Programmer's computer

Check out code①

Unit testing③

Test results④

Development
cycle

Changes②

Local repo.
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New development cycle

<HEAD>

Local repo.

Diff Test case
information

Source tree
<HEAD>

Repository server

Programmer's computer

Check out code①

Changes② Analyzing
dependencies

③

Affected test cases

④Development
cycle

Unit testing

⑤ Test results
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New development cycle

<HEAD>

Local repo.

Diff Test case
information

Source tree
<HEAD>

Repository server

Programmer's computer

Check out code①

Changes② Analyzing
dependencies

③

Affected test cases

④Development
cycle

Unit testing

⑤ Test results



13

Identifying affected test cases by 
the code modification

● Plan: track which tests execute which functions

– Step 1: generate function-level dependency info.
● Map: invoked functions  test case↔
● Construct map by running all unit tests

– Step 2: identify modified func., given code changes
– Step 3: identify tests that ran the modified func.
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Identifying affected test cases by 
the code modification

● Plan: track which tests execute which functions

– Step 1: generate function-level dependency info.
● Map: invoked functions  test case↔
● Construct map by running all unit tests

– Step 2: identify modified func., given code changes
– Step 3: identify tests that ran the modified func.
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Bootstrapping dependency info. 

<HEAD>

Local repo.

Diff Dep. info

Development
cycle

Source tree
<HEAD>

Repository server

Programmer's computer

Check out code

Changes Analyzing
dependencies

Unit testing

Testing results

Generated by running 
full unit tests



16

Bootstrapping dependency info. 

<HEAD>

Local repo.

Diff Dep. info

Development
cycle

Source tree
<HEAD>

Repository server

Programmer's computer

Check out code

Changes Analyzing
dependencies

Unit testing

Testing results

Dependency info
<HEAD>

Dependency server

Check out dep. info

<HEAD>
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Update dependency information

<HEAD>
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Diff Dep. Info
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Source tree
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Repository server
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Dependency server
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dep. info

Unit testing

<0xac0ffee> <0xac0ffee>

Changes
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Update dependency information
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Problem: false negatives
● Function-level tracking can miss some dependencies and 

cause false negatives
– Failed to identify some test cases that are actually affected

● Identified five types of missing dependencies
– Inter-class dependency
– Non-determinism
– Class variable
– Global-scope
– Lexical dependency
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Example: inter-class dep. in Python

  class A:
    def foo():
      return 1
  class B(A):
    pass

  def testcase():
    assertEqual(
      B().foo(), 1)
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Example: inter-class dep. in Python

  class A:
    def foo():
      return 1
  class B(A):
    pass

  def testcase():
    assertEqual(
      B().foo(), 1)

Dependency info:

testcase()   →
    B.__init__()
    A.foo()
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  class A:
    def foo():
      return 1
  class B(A):
    pass

  def testcase():
    assertEqual(
      B().foo(), 1)

Example: inter-class dep. in Python

Dependency info:

Modified functions:

testcase()   →
    B.__init__()
    A.foo()

B.foo()

-   pass
+   def foo():
+     return 2
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Example: missing dep. because of 
non-determinism in Python

  def foo():
-   return 1
+   return 2
 
  def testcase():
    if rand()%2:
      assertEqual(
        foo(), 1)

Dependency info:

Modified functions:

testcase()  →
   rand()
   foo()

foo()

testcase()   →
   rand()or



25

Example: missing dep. because of 
non-determinism in Python

  def foo():
-   return 1
+   return 2
 
  def testcase():
    if rand()%2:
      assertEqual(
        foo(), 1)

Dependency info:

Modified functions:

testcase()  →
   rand()
   foo()

foo()

testcase()   →
   rand()or
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Example: class-var. dep. in Python

Dependency info:

Modified functions:

testcase()   →
    foo()

N/A

  class C:
-   a = 1
+   a = 2
  def foo():
    return C.a

  def testcase():
    assertEqual(
      foo(), 1)
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Solution: test server runs all tests async.

<HEAD>

Local repo.

Diff Dep. Info
<HEAD>

Development
cycle

Source tree
<HEAD>

Repository server

Programmer's computer

Changes Analyzing
dependencies

Unit testing

Testing results

Dependency info
<HEAD>

Dependency server

Full unit testing
<HEAD>

Test server

Incremental 
dep. info

Changes
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Test server also verifies dep. info

<HEAD>

Local repo.

Diff Dep. Info
<HEAD>

Development
cycle

Source tree
<HEAD>

Repository server

Programmer's computer

Analyzing
dependencies

Testing results

Dependency info
<HEAD>

Dependency server

Full unit testing
<HEAD>

Test server

Unit testing

Verify

ChangesChanges

Incremental 
dep. info
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TAO: a prototype for PyUnit

Dep. Info
<HEAD>

Source tree
<HEAD>

Repository server

Programmer's computer

Dependency info
<HEAD>

Dependency server

Full unit testing
<HEAD>

Test server

Incremental 
dep. info

<HEAD>

Repository

Changes Analyzing
dependencies

Unit testing

Testing results

Diff

Development
cycle
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Implementation

● TAO: a prototype for PyUnit
– Extending standard python-unittest library
– Patch analysis: using ast/diff python module
– Dependency tracking: using settrace() interface
– 800 Lines of code in Python
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Evaluation

● How many functions are modified in each 
commit in large software programs?

● How much testing time can be saved as result?
● How many false negatives does TAO incur?
● What is the overall runtime overhead of TAO?
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Experiment setup

● Two popular projects: Django and Twisted
– Django: a web application framework
– Twisted: a network protocol engine
– Use existing unit tests of both projects
– Integrate TAO into both projects
– Analyze the latest 100 commits of each project
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Small number of functions are 
modified in each commit

● Django: 50.8 / 13k functions (0.3%)
● Twisted: 18.2 / 23k functions (0.07%)

 Commit IDs (recent 100 commits)

Django Twisted
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Small number of test cases 
need to be rerun

● Django: 50.4 / 5k test cases (1.0%)
● Twisted: 28.7 / 7k test cases (0.4%)

Django Twisted

 Commit IDs (recent 100 commits)
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Small number of test cases 
need to be rerun

● Django: 50.4 / 5k test cases (1.0%)
● Twisted: 28.7 / 7k test cases (0.4%)

Django Twisted

 Commit IDs (recent 100 commits)
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Trend 1: #affected test cases is 
correlated with #modified functions

Django

 Commit IDs (recent 100 commits)
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Trend 2: many modified functions, 
few affected test cases 

Django

 Commit IDs (recent 100 commits)
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Trend 2: many modified functions, 
few affected test cases 

DjangoRefactoring (maintenance):
e.g., unittest2()

 Commit IDs (recent 100 commits)
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Trend 3: few modified functions, 
many affected test cases 

Django

 Commit IDs (recent 100 commits)
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Trend 3: few modified functions, 
many affected test cases 

Changes in “hot” funcs:
e.g., WSGIRequest()

Django

 Commit IDs (recent 100 commits)
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TAO can improve the overall 
execution time for unit testing

Project
#Test cases Execution  time (s)

All TAO All TAO

Django 5,166 50.8 520.3s 1.7s

Twisted 7,150 28.7 72.1s 2.2s

● Django: 520.3s  1.7s (5k  50.8 test cases)→ →

● Twisted: 72.1s  2.2s (7k  29.7 test cases)→ →
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TAO has few false negatives (FN)

Project FN/I
(inter-class)

FN/N
(non-det.)

FN/G
(global scope)

FN/C
(class var.)

FN/L
(lexical dep.)

Django 0/0 0/0 2/8 1/3 1/23

Twisted 1/2 0/0 1/20 1/17 0/11

● We manually identified types of missing dependencies and 
false negatives on each commit

● Django: 3 false negatives (one commit is counted in both G/L)

● Twisted: 3 false negatives
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TAO has few false negatives (FN)

Project FN/I
(inter-class)

FN/N
(non-det.)

FN/G
(global scope)

FN/C
(class var.)

FN/L
(lexical dep.)

Django 0/0 0/0 2/8 1/3 1/23

Twisted 1/2 0/0 1/20 1/17 0/11

● We manually identified types of missing dependencies and 
false negatives on each commit

● Django: 3 false negatives (one commit is counted in both G/L)

● Twisted: 3 false negatives

Among class variable deps we identified, 
how many false negatives end up getting at?
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Example: not all missing deps 
cause false negatives

  class DecimalField(IntegerField):
      default_error_messages = {
          ...
-         'max_digits': _(msg)
+         'max_digits': ungettext_lazy(msg)
      ...

      def __init__(...):
          ...
-             raise ValidationError(oldmsg)
+             raise ValidationError(newmsg)

Missing dep.: class var.

Function-level dependency
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Dependency tracking imposes 
performance overheads

Project
Runtime Storage

no TAO TAO Full Incremental

Django 520.3s 1,129.1s 9.9MB 270KB

Twisted   72.1s    115.6s 1.3MB 280KB

● Django: 10 min (117%) to generate dep. info (9.9MB)
● Twisted:  <1 min (60%) to generate dep. info (1.3MB)
● Performance can be improved if we implement function-level 

tracing natively, instead of using settrace() library.
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Incremental dependency 
information is small

Project
Runtime Storage

no TAO TAO Full Incremental

Django 520.3s 1,129.1s 9.9MB 270KB

Twisted   72.1s    115.6s 1.3MB 280KB

● Django: 270KB incremental dep. info (per commit)
● Twisted: 280KB incremental dep. info (per commit)
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Related work
● Regression test selection: 

– RTS [Biswas '11]: survey of available RTS techniques

  → Simple function-level dependency is effective in practice

  → TAO can be integrated into the programmer's workflow

● Dependency tracking:
– Poirot [Kim '12]: intrusion recovery

– TaintDroid [Enck '12]: privacy monitoring

  → Dependency tracking can optimize unit test execution
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Summary

TAO: a system that optimizes unit test 
execution using dependency analysis

– Tracks function-level dependency of each unit test
– Analyzes code changes to find the affected test cases
– Runs only affected test cases (but few false negative)
– Integrated into programmer's development cycle
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