
Optimizing unit test execution
in large software programs
 using dependency analysis

Taesoo Kim,
Ramesh Chandra and Nickolai Zeldovich

MIT CSAIL

2

Running unit tests takes too long

It’s our policy to make sure all
tests pass at all times.

● Large software programs often require running full
unit tests for each commit

● But, unit tests take about 10 min in Django
● With our work, it can be done within 2 sec!

3

Current approaches for shortening
testing time

● Modular unit tests (e.g., testsuite)
– Run a certain set of unit tests that might be affected

● Test bot (e.g., gtest, autotest)
– Run unit tests remotely and get the results back

4

Problem: current approaches are
very limited

● Manual efforts involved
– Maintaining multiple test suites

● Overall testing still takes too long
– Waiting for Test bot to complete full unit testing

5

Research: regression test selection
(RTS)

● Goal: run only necessary tests instead of full tests

– identify test cases whose results might change due
to the current code modification

– Step 1: analyze test cases (e.g., execution traces)
– Step 2: syntactically analyze code changes
– Step 3: output the affected test cases

RTS
Code changes

Affected test
cases

Test cases

6

Problem: RTS techniques are
never adopted in practice

● “Soundness” of RTS techniques kills adoption
– Soundness means no false negatives

– Impose non-negligible perf. overheads (analysis/runtime)

– Select lots of test cases (particularly in dynamic languages)

– e.g., changes in a global variable run → all test cases

7

Goal: make RTS practical

● Idea 1: trade off soundness for performance
– Keep track of function-level dependency / changes

– Fewer tests selected, may have false negatives

● Idea 2: integrate test optimization into dev. cycle
– Maintain dependency information in code repository

8

Current development cycle

<HEAD>

Source tree
<HEAD>

Repository server

Programmer's computer

Check out code①

Local repo.

9

Current development cycle

<HEAD>

Source tree
<HEAD>

Repository server

Programmer's computer

Check out code①

Changes②

Local repo.

10

Current development cycle

<HEAD>

Source tree
<HEAD>

Repository server

Programmer's computer

Check out code①

Unit testing③

Test results④

Development
cycle

Changes②

Local repo.

11

New development cycle

<HEAD>

Local repo.

Diff Test case
information

Source tree
<HEAD>

Repository server

Programmer's computer

Check out code①

Changes② Analyzing
dependencies

③

Affected test cases

④Development
cycle

Unit testing

⑤ Test results

12

New development cycle

<HEAD>

Local repo.

Diff Test case
information

Source tree
<HEAD>

Repository server

Programmer's computer

Check out code①

Changes② Analyzing
dependencies

③

Affected test cases

④Development
cycle

Unit testing

⑤ Test results

13

Identifying affected test cases by
the code modification

● Plan: track which tests execute which functions

– Step 1: generate function-level dependency info.
● Map: invoked functions test case↔
● Construct map by running all unit tests

– Step 2: identify modified func., given code changes
– Step 3: identify tests that ran the modified func.

14

Identifying affected test cases by
the code modification

● Plan: track which tests execute which functions

– Step 1: generate function-level dependency info.
● Map: invoked functions test case↔
● Construct map by running all unit tests

– Step 2: identify modified func., given code changes
– Step 3: identify tests that ran the modified func.

15

Bootstrapping dependency info.

<HEAD>

Local repo.

Diff Dep. info

Development
cycle

Source tree
<HEAD>

Repository server

Programmer's computer

Check out code

Changes Analyzing
dependencies

Unit testing

Testing results

Generated by running
full unit tests

16

Bootstrapping dependency info.

<HEAD>

Local repo.

Diff Dep. info

Development
cycle

Source tree
<HEAD>

Repository server

Programmer's computer

Check out code

Changes Analyzing
dependencies

Unit testing

Testing results

Dependency info
<HEAD>

Dependency server

Check out dep. info

<HEAD>

17

Update dependency information

<HEAD>

Local repo.

Diff Dep. Info
<HEAD>

Development
cycle

Source tree
<HEAD>

Repository server

Programmer's computer

Analyzing
dependencies

Testing results

Dependency info
<HEAD>

Dependency server

Incremental
dep. info

Unit testing

<0xac0ffee> <0xac0ffee>

Changes

18

Update dependency information

<HEAD>

Local repo.

Diff Dep. Info
<HEAD>

Development
cycle

Source tree
<HEAD>

Repository server

Programmer's computer

Analyzing
dependencies

Testing results

Dependency info
<HEAD>

Dependency server

Incremental
dep. info

Unit testing

<0xac0ffee> <0xac0ffee>

Changes

19

Problem: false negatives
● Function-level tracking can miss some dependencies and

cause false negatives
– Failed to identify some test cases that are actually affected

● Identified five types of missing dependencies
– Inter-class dependency
– Non-determinism
– Class variable
– Global-scope
– Lexical dependency

20

Problem: false negatives
● Function-level tracking can miss some dependencies and

cause false negatives
– Failed to identify some test cases that are actually affected

● Identified five types of missing dependencies
– Inter-class dependency
– Non-determinism
– Class variable
– Global-scope
– Lexical dependency

21

Example: inter-class dep. in Python

 class A:
 def foo():
 return 1
 class B(A):
 pass

 def testcase():
 assertEqual(
 B().foo(), 1)

22

Example: inter-class dep. in Python

 class A:
 def foo():
 return 1
 class B(A):
 pass

 def testcase():
 assertEqual(
 B().foo(), 1)

Dependency info:

testcase() →
 B.__init__()
 A.foo()

23

 class A:
 def foo():
 return 1
 class B(A):
 pass

 def testcase():
 assertEqual(
 B().foo(), 1)

Example: inter-class dep. in Python

Dependency info:

Modified functions:

testcase() →
 B.__init__()
 A.foo()

B.foo()

- pass
+ def foo():
+ return 2

24

Example: missing dep. because of
non-determinism in Python

 def foo():
- return 1
+ return 2

 def testcase():
 if rand()%2:
 assertEqual(
 foo(), 1)

Dependency info:

Modified functions:

testcase() →
 rand()
 foo()

foo()

testcase() →
 rand()or

25

Example: missing dep. because of
non-determinism in Python

 def foo():
- return 1
+ return 2

 def testcase():
 if rand()%2:
 assertEqual(
 foo(), 1)

Dependency info:

Modified functions:

testcase() →
 rand()
 foo()

foo()

testcase() →
 rand()or

26

Example: class-var. dep. in Python

Dependency info:

Modified functions:

testcase() →
 foo()

N/A

 class C:
- a = 1
+ a = 2
 def foo():
 return C.a

 def testcase():
 assertEqual(
 foo(), 1)

27

Solution: test server runs all tests async.

<HEAD>

Local repo.

Diff Dep. Info
<HEAD>

Development
cycle

Source tree
<HEAD>

Repository server

Programmer's computer

Changes Analyzing
dependencies

Unit testing

Testing results

Dependency info
<HEAD>

Dependency server

Full unit testing
<HEAD>

Test server

Incremental
dep. info

Changes

28

Test server also verifies dep. info

<HEAD>

Local repo.

Diff Dep. Info
<HEAD>

Development
cycle

Source tree
<HEAD>

Repository server

Programmer's computer

Analyzing
dependencies

Testing results

Dependency info
<HEAD>

Dependency server

Full unit testing
<HEAD>

Test server

Unit testing

Verify

ChangesChanges

Incremental
dep. info

29

TAO: a prototype for PyUnit

Dep. Info
<HEAD>

Source tree
<HEAD>

Repository server

Programmer's computer

Dependency info
<HEAD>

Dependency server

Full unit testing
<HEAD>

Test server

Incremental
dep. info

<HEAD>

Repository

Changes Analyzing
dependencies

Unit testing

Testing results

Diff

Development
cycle

30

Implementation

● TAO: a prototype for PyUnit
– Extending standard python-unittest library
– Patch analysis: using ast/diff python module
– Dependency tracking: using settrace() interface
– 800 Lines of code in Python

31

Evaluation

● How many functions are modified in each
commit in large software programs?

● How much testing time can be saved as result?
● How many false negatives does TAO incur?
● What is the overall runtime overhead of TAO?

32

Experiment setup

● Two popular projects: Django and Twisted
– Django: a web application framework
– Twisted: a network protocol engine
– Use existing unit tests of both projects
– Integrate TAO into both projects
– Analyze the latest 100 commits of each project

33

Small number of functions are
modified in each commit

● Django: 50.8 / 13k functions (0.3%)
● Twisted: 18.2 / 23k functions (0.07%)

 Commit IDs (recent 100 commits)

Django Twisted

34

Small number of functions are
modified in each commit

● Django: 50.8 / 13k functions (0.3%)
● Twisted: 18.2 / 23k functions (0.07%)

 Commit IDs (recent 100 commits)

Django Twisted

35

Small number of functions are
modified in each commit

● Django: 50.8 / 13k functions (0.3%)
● Twisted: 18.2 / 23k functions (0.07%)

 Commit IDs (recent 100 commits)

Django Twisted

36

Small number of functions are
modified in each commit

● Django: 50.8 / 13k functions (0.3%)
● Twisted: 18.2 / 23k functions (0.07%)

 Commit IDs (recent 100 commits)

Django Twisted

37

Small number of test cases
need to be rerun

● Django: 50.4 / 5k test cases (1.0%)
● Twisted: 28.7 / 7k test cases (0.4%)

Django Twisted

 Commit IDs (recent 100 commits)

38

Small number of test cases
need to be rerun

● Django: 50.4 / 5k test cases (1.0%)
● Twisted: 28.7 / 7k test cases (0.4%)

Django Twisted

 Commit IDs (recent 100 commits)

39

Trend 1: #affected test cases is
correlated with #modified functions

Django

 Commit IDs (recent 100 commits)

40

Trend 2: many modified functions,
few affected test cases

Django

 Commit IDs (recent 100 commits)

41

Trend 2: many modified functions,
few affected test cases

DjangoRefactoring (maintenance):
e.g., unittest2()

 Commit IDs (recent 100 commits)

42

Trend 3: few modified functions,
many affected test cases

Django

 Commit IDs (recent 100 commits)

43

Trend 3: few modified functions,
many affected test cases

Changes in “hot” funcs:
e.g., WSGIRequest()

Django

 Commit IDs (recent 100 commits)

44

TAO can improve the overall
execution time for unit testing

Project
#Test cases Execution time (s)

All TAO All TAO

Django 5,166 50.8 520.3s 1.7s

Twisted 7,150 28.7 72.1s 2.2s

● Django: 520.3s 1.7s (5k 50.8 test cases)→ →

● Twisted: 72.1s 2.2s (7k 29.7 test cases)→ →

45

TAO has few false negatives (FN)

Project FN/I
(inter-class)

FN/N
(non-det.)

FN/G
(global scope)

FN/C
(class var.)

FN/L
(lexical dep.)

Django 0/0 0/0 2/8 1/3 1/23

Twisted 1/2 0/0 1/20 1/17 0/11

● We manually identified types of missing dependencies and
false negatives on each commit

● Django: 3 false negatives (one commit is counted in both G/L)

● Twisted: 3 false negatives

46

TAO has few false negatives (FN)

Project FN/I
(inter-class)

FN/N
(non-det.)

FN/G
(global scope)

FN/C
(class var.)

FN/L
(lexical dep.)

Django 0/0 0/0 2/8 1/3 1/23

Twisted 1/2 0/0 1/20 1/17 0/11

● We manually identified types of missing dependencies and
false negatives on each commit

● Django: 3 false negatives (one commit is counted in both G/L)

● Twisted: 3 false negatives

Among class variable deps we identified,
how many false negatives end up getting at?

47

Example: not all missing deps
cause false negatives

 class DecimalField(IntegerField):
 default_error_messages = {
 ...
- 'max_digits': _(msg)
+ 'max_digits': ungettext_lazy(msg)
 ...

 def __init__(...):
 ...
- raise ValidationError(oldmsg)
+ raise ValidationError(newmsg)

Missing dep.: class var.

Function-level dependency

48

Dependency tracking imposes
performance overheads

Project
Runtime Storage

no TAO TAO Full Incremental

Django 520.3s 1,129.1s 9.9MB 270KB

Twisted 72.1s 115.6s 1.3MB 280KB

● Django: 10 min (117%) to generate dep. info (9.9MB)
● Twisted: <1 min (60%) to generate dep. info (1.3MB)
● Performance can be improved if we implement function-level

tracing natively, instead of using settrace() library.

49

Incremental dependency
information is small

Project
Runtime Storage

no TAO TAO Full Incremental

Django 520.3s 1,129.1s 9.9MB 270KB

Twisted 72.1s 115.6s 1.3MB 280KB

● Django: 270KB incremental dep. info (per commit)
● Twisted: 280KB incremental dep. info (per commit)

50

Related work
● Regression test selection:

– RTS [Biswas '11]: survey of available RTS techniques

 → Simple function-level dependency is effective in practice

 → TAO can be integrated into the programmer's workflow

● Dependency tracking:
– Poirot [Kim '12]: intrusion recovery

– TaintDroid [Enck '12]: privacy monitoring

 → Dependency tracking can optimize unit test execution

51

Summary

TAO: a system that optimizes unit test
execution using dependency analysis

– Tracks function-level dependency of each unit test
– Analyzes code changes to find the affected test cases
– Runs only affected test cases (but few false negative)
– Integrated into programmer's development cycle

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	page8 (1)
	page8 (2)
	page8 (3)
	page9 (1)
	page9 (2)
	page10 (1)
	page10 (2)
	page11 (1)
	page11 (2)
	page12 (1)
	page12 (2)
	page13 (1)
	page13 (2)
	page14 (1)
	page14 (2)
	page14 (3)
	page15 (1)
	page15 (2)
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	page23 (1)
	page23 (2)
	page23 (3)
	page23 (4)
	page24 (1)
	page24 (2)
	Slide 39
	page26 (1)
	page26 (2)
	page27 (1)
	page27 (2)
	Slide 44
	page29 (1)
	page29 (2)
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

